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Robot Juggling: An Implementation of Memory-based Learning

Stetan Schaal and Christopher G. Aikeson”

Abstract

This paper explures issues involved in implementing robot
learmung for a challenging dynamic task, using a case study
from robot juggling. We use a memory-based local model-
ing approach (locally weighted regression) to represent a
leamed model of the task to be performed. Statistical tests
are given to examune the uncertainty of a model, to optimize
its preasction quality, and to deal with noisy and corrupted
data. We develop an exploration algorithm that explicitly
deals with predicuon accuracy requirements during explo-
ration. Using all these ingredients in combination with
methods from optimal control, our robot achieves fast real-
ume learning of the task within 40 to 100 trials.

Address of both suihors: Massachusetts Institute of Technoiogy, The Artificial Intelligence Laboratory & The
Depastinent of Braiti and Cognitive Sciences, 545 Technology Square, Cambride, MA 02139, USA. Email: ss-
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Semens Corporation. Support for the first author was provided by the German Scholaship Foundation and the
Alenander von Humboldt Foundation. Support for the second uuthor was provided by a National Science Foundation
Prewdennal Young Investigaior Award. We thank Gideon Stein for implementing the tirst version of LWR on the
1864 mucroprocessac, and Gerrie van Zyl for building the devil stick robot and impl+menting the first version of devil
Wik learmung
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Introduction

Leaming control means improving a motor skill by repeatedly practicing a task. There has
been much progress in leaming conirol research. But many projects test proposed algo-
rithms only in simulation. We have found that actual implementation of learning control
forces us to consider issues not adequately addressed in simulations. In this paper we de-
scribe which ingredients were needed to actually implement a learning algorithm on a
robot for a complicated dynamuc task.

We are exploring systems that leamn by explicitly remembering their experiences in
order to build models of the world. The learning community distinguishes between two dif-
ferent methods to represent a model, parametric and onparametric. A parametric model
consists of a certain mathematical function which possesses a finite set of free parameters
that have to be determuned to make the function fit the data. This function models ail data
s:multaneously. whuch means that parametric models correspond to global function fitting.
Parametric models and training methods often do not remember the data they were trained
on. Standard linear regression, sigmoidal neural networks, radial basis function neiwoiks,
etc., belong 1n this class of techniques. Nonparametric models also have an underlying:
function with a set of parameters which are to be adjusted. However, the number of the pa~
rameters can grow with the amount of data and the parameters can be recalculated when-
ever the model is used to generate an output from a new input (a3 process which is also
called a lookup or query). This makes sense if not all data is taken into account to estimate
the parameters but nierely a subset, or if individual data points arc weighted differently
with respect to different query points. Common algorithms to choose the subset or the
weighting are, for example. n-nearest neighbor methods (e.g.. [12. 25]) or kernel regression
(e.g.. [19. 28, 37]). Common functions are (hyper-)planes or (hyper-)quadratic surfaces. By
letting only a few data points contribute to forming the parameters, these types of non-
parametric models cotrespond to local function fitting: they build a local model to fit a
subset of data points with their function. As the word “local” implies, the model will be
valid only in a restricted region. Due to the necessity of continuous recalculation of the pa-
ramcters for each individual query, local nonparametric medels have to memorize all data
and are often called memory-based. Weighted averaging and nearest neighbor methods are
presumably the best known nonparametric approaches.

We are investigating a recently developed nonparametric (memory-based) statistical
technique, locally weighted regression (LWR), to model the system we are trying to con-
trol [11, 15, 16]. The LWR approach allows us to efficiently estimate local linear models
for different points in the state space. LWR offers a variety of statistical tools to assess the
reliability of lookups, to optimize the quality of a lookup, and also to cope with noise and
corrupted data. This allows the robot to monitor its own skill level, and it provides the ba-




sis for an exploratory behavior that is almost cntirely driven by the stream of incoming data
from practicing the task.

Our starting point for modeling is that we assume knowledge of what constitutes a
siate of the system, i.e., the input/output representations, but the form of the dynamics
equations of the task to be controlled is unknown. Past work tested our ideas by imple-
menting learning for one-shot or static tasks, such as throwing a ball at a target [1], and
also repetitive or dynamic tasks, such as bouncing a ball on a paddle [2] and hitting a stick
back and forth (a form of juggling known as devil sticking) [40]. This as well as other ex-
perimental work (e.g., [32]) has highlighted the importance of making sure the control
paradigm used is robust to uncertainty, that the robot is able to compute what is known
about the task, and how well it is known, and that there is some process that generates ex-
ploration, so that models and controllers based on insufficient data are improved. All these
points are addressed by the LWR learning algorithm. Using our work with the devil stick-
ing robot as an example, this paper describes what was needed to implement real-time
learning based on this algorithm.

The next section of this paper discusses a number of contro! approaches which make .
use of models and motivates the choice in our work. Locally weighted regression and some”.
of its statistical tools are introduced afterwards. Exploration, a key feature for system iden-
tification of modeling approaches, receives attention in the fourth section where we intro-
duce a goal-directed exploration algorithm which keeps explicit control over prediction ac-
curacy during exploration. In the fifth section, the previously introduced methods are find
application in a real-time implementation of learning how to juggle the devil stick.

Y

Control Paradigms

Before discussing the details of our representational approach, it is useful to consider some
of the alternative control paradigms that might make use of learned models.

Deadbeat Control

In considering repetitive or dynamic tasks, we will focus on nonlinear regulator design, as-
suming there is a desired state x,' to achieve. Since often the observations of system in-
2 puts and outputs occur at discrete time intervals and not all the derivatives of the state are
iypically measured, we resirici ousr anaiysis (o discreie time modeis. The notation for the
forward dynamics model of a discrete system is

! Out notation has the following conventions: scalars are denoted by lower cases letters in italic tace (e.g., 5), vectors

are denoted by lower case letiers in bold face (e.§., v). matrices are denoted by upper case letiers in beld face (e.3.
M), scalar valued function are in italic tace (e.g.. f)). vector valued function ae in bold face (e.g.. f)). and ()7
denotes the transpose of a vec ‘or or matrix, whereby all vectors are originally column vectors. The * (caret) indicates
models aid predictions by models. Dots on top of variables indicate time derivatives.
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Xl =f'(xk,uk) (2.1)

: - T .
and attempts to perform the task generate experience vectors (xi ,u[,xfﬂ) . A straightfor-
ward approach to improving performance on the task is to learmn an inverse model

a, =1"(x,.x,.,) (2.2)

from the database of experiences and use the model to predict commands for later attempts
of the task by replacing x,,, in (2.2) by a desired state X, ., ... Another approach is to
learn the forward model (2.1) and then search for a good coinmand, minimizing the (by Q
and R weighted) squared magnitude of the predicted state error and the command:

rx&n[(f(x,.u,) - xd)TQ(f(x,,,ut)— xd)+ ufRu,]. (2.3)

Eq.(2.2) and Eq.(2.3) with R =0 correspond to deadbeat control.

The deadbeat controllers above did not achieve satisfying robustness iz our work
since they attempt to cancel the plant dynamics entirely. A less aggressive nonlinear con:
troi approach is to locally linearize the system about the desired point, and then use one of
the many linear controller design techniques, ¢.g., pole placement, linear quadratic (LQ), or
Hoo. Such an approach is very successful if the system remains withia the linear region.

Representing the Forward Model

Modeling approaches require model representations. If the nonlinear system has a particu-
lar structure, it can be globally linearized using nonlinear coordinate transformations and
state feedback (feedback linearization) [36]. Any linear control design techniqu:s may be
used subsequently. Much of the recent work in adaptive controllers for nonlinear systems
assumes some knowledge of the form of the nonlinearities and the plant’'s unknown pa-
rameters [30]. A common formulation requires the plant be representable accurately by a
feedback linearizable model in which all unknown elements appear lincarly as a parameter
vector. A more black box approach to adaptive control [21] is to use a form of parametric
Volterra series in the inputs and states. Single hidden layer perceptron-like neural network
models essentially project the input data along a line given by the inpui weights, and then
output a one dimensional function of the value of that projection. Radial basis function
networks use centers of spherically symmetric contributions from parameterized one
dimensional functions applied to the distance between each input and the center. All these
approaches make implicit assumptions about the form of the system they are interacting
with, which we want to avoid, as will be demonstrated in the next section.

Optimal Control Approaches

Learning approaches that do not commit to a particular representational form generate nu-
merical representations, for which optimal control techniques provide natural methods to




design control systems for nonlinear tasks. Dynamic programming [8, 9, 13] lays the basis
for a general paradigm of nonlinear controllers. In our formulation of the regulation prob-
lem, a goal state x, is given, which is typically an equilibrium state, so x, =f(x,,0). A
one step cost L(x,u) is defined over all states and controls. The criterion to be optimized is
the infinite horizon sum of one step costs starting at the current time:

7= L(x,.u,). (2.4)

k=]

We typically require either a temporal discount factor or L(x,,0)=0 to ensure well de-
fined solutions to the optimization problem. The value function V(x) is the optimal cost
created by solving (2.4) starting in state x. At any point, a globally optimal control action
can be chosen by the nonlinear controller by solving the local optimization problem:

u” =arg m“in[L(x.u) + V(f(x.u))]. (2.5)
If one assumes a locally linear model of the plant,
X,. = f(x,,u;) ~ Ax, +Bu, +c¢, (2.6)
a weighted locally quadratic model of the one step cost, ‘
L(x,u) = -;—erx + %uTRu +x"Su+tTy, Q.7
and a locally quadratic model of the value function,
V(x)=V,+V,x+ -;-x’Vux. (2.8)

one can compute a locally optimal command analytically:
u” = -(R+B’V,B)" (B'V Ax +8"x + BV c +V,B+t). 2.9)

Unfortunately, value functions are difficult to represent and to compute, even though
this can be done off-line. Predictive control design techniques avoid using a value function,
but are then merely locally optimal [10]. Value functions can also be approximated, e.g.,
with neural networks [42]. We are interested in exploring approximations to value func-
tions that produce a locally quadratic modei of V(x) in a local neighborhood of x.

In this paper we are working within an optim<' control framework. We would like to
design a fully nonlinear controller from a full computation of the optimal value function.
This is currently too expensive to compute, so we use linear quadratic (LQ) regulator tech-
niques to approximate the value function and design a corresponding controller. We make
extensive use of local linear models of the system to be controlled. The linearized models
are calculated on an as needed basis and are recalculated with each new piece of data to
update the controller. All of this happens in real time as the robot is executing the task.




Locally Weighted Regression

The point of view explored in this paper is that the goal of a learning system for robots is
to be able to build internal models of tasks during execution of those tasks. These models
are multidimensional functions that are approximated from sampled data (the previous ex-
periences or attempts to perform the task). The learned models are used in a variety of
ways to successfully execute the task. We would like the models to incorporate the latest
information. The models will be continuously updated with a stream of new training data,
so updating a model witl new data should take a short period of time. There are also time
constraints on how long it can take to use a model to make a prediction. Because we are
interested in control methods that make use of local linearizations of the plant model, we
want a representation that can quickly compute a local linear model of the represented
transformation. We would also like to minimize the negative interference from learning
new knowledge on previously stored information.
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Figure I:  Characteristic performance of three different nonparametric function approximation tech-
niques: (a) nearest neighbor; (b) weighted average; (c) locally weighted regression

As the most gencric approximator that satisfies many of these criteria, we explore a
version of memory-based leaming techniques called locally weighted regression (LWR).
(15, 16, 11, 6, 24, 14, 27]. A memory-based learning (MBL) sysiem is trained by storing
the training data in a memory. This allows MBL systems to achieve real-time leaming.
MBL avoids intertercnce between new and old data by retaining and using all the data to

answer cach query. MBL approximates complex functions using simple local models, as

does a Taylor series. Examples of types of local models include nearest neighbor, weighted
average, and locally weighted regression. Each of these local models combine points near
to a query point to estimate the ppropriate output. Figure ! shows typical curve fits for
each of these methods.

Locally weighted regression uses a relatively complex regression procedure to form
the local model, and is thus more expensive than nearest neighbor and weighted average




memory-based learning procedures. For each query a new local model is formed. The rate
at which local models can be formed and evaluated limits the rate at which queries can be
answered. This paper describes how locally weighted regression can be implemented in
real time,
An unweighted regression finds the solution to the equations:
y=XB (3.1a)
by solving the normal equations:
X'Xp=X"y, (3.1.b)

where X is an m X (n + 1) matrix consisting of m data points, each represented by its # in-
put dimensions and a “1” in the last column, y is a vector of corresponding outputs for
each data point, B is the n+1 vector of unknown regression parameters, and J is the sum
of squared errors over ali given data points (cf. Table 1, Appendix A). Solving tor P yields

B=X"X)"X"y, (3.2)
and a prediction of the outcome of a query point x, becomes: :
3, =xB. (3.3)3

However, this gives distant points equal influence with nearby points on the uitimate ans-
wer to the query, for equally spaced du.a. To weight similar peints more, locaily weighted
regression is used. First, a distance is calculated from each of the stored data points (rows
in the X matrix) to the query point X :

n 2
2 _
d _Z,s,.(x,, -x,,) - (3.4)
The factor s; reflects a positive weighting (distance metric) among the n input dimensions,
cither to normalize those or to give them different importance. The weight for each stored
data point is a function of the distance (3.4):

w, = f(d}). (3.5)

Each row i of X and y is multiplied by the corresponding weight w;. A simple weighting
function just raises the distance (3.4) to a negative power, which determines how local the
regression will be (the rate of drop-off of the weights with distance):

W =—,
i dlk

(3.6)

This type of weighting function goes to infinity as the query point approaches a stored data
point which forces the locally weighted regression to exactly match vhat siored point. If the
data 1s noisy, exact interpolation is not desirable, and a weighting scheme with limited




magnitude is more appropriate. One such scheme, which we use in what follows, is a
Gaussian kernel:

_diz .
w = exp(az-z—} (3.7)

The parameter k scales the size of the kernel to determine how local the regression will be.
Such a weighting is used in Figure 1b and Figure lc.

A potential problem is that the data points may be distributed in such a way as to
make the regressior. matrix X singular. Ridge regression is used to prevent problems due
to a singular data matrix. The following equation, with X and y already weighted, is
solved for f3:

(X'X+AB=X"y. (3.8)

where A is a diagonal matrix with small positive diagonal elements A?. Ridge regression
is equivalent to adding fake data in each direction that has a small weight and a zero output
value. The ridge regression constants can also be thought of as Bayesian priors or the vari-
ance of the estimated parameter vector p.

Assessing the computational cost

A lookup in a LWR model has three stages: forming weights, forming the regression ma-
trix, and solving the normal equations. Let us examine Liow the cost of each of these stages
grows with the size of the data set and dimensionality of the problem. We will assume a
linear local model.

Forming and applying the weights involves scanning the entire data set, so it scales
linearly with the number of data points in the database m. For each of n input dimensions
there are a constant number of operations, so the number of operations scales linearly with
the number of input dimensions. Note that we can eliminate points whose distance exceeds
a threshold, reducing the number of points considered in subsequent computational stages.

' Each element of XX and X"y is the inner (dot) product of two columus of X or y.
The architecture of digital signal processors is ideally suited for this computation, which
consists of repeated multiplies and accumulates. The computation is linear ir the number
of rows m and quadratic in the number of columns (n2 + n*o). where o is the number of
output dimeasions.

Solving the normal equations is done using a LDL" decomposition, which is cubic in
the number of input dimensions, and independent of the number of data points. Other more
sophisticated and more expensive decompositions, such as the singular value decomposi-
tion, are unnecessary since the ridge regression procedure guarantees well-conditioned
normal equations.




The most straightforward paralle! implementation of LWR would distribute the data
points among several processors. Queries can be broadcast to the processors, and each pro-
cessor can weight its data set and form its contribution to X”X and X"y. These contribu-
tions can be summed and the full normal equations solved on a single processor. The
comriunication costs are linear in the number of processors, quadratic in the number of
columns (n2 + nx o), and independent of the total number of points.

We have implemented the local weighted regression procedure on a 33MHz Intel
1860 microprocessor. The peak compuiation rate of this processor is 66 MFlops. We have
achieved effective computation rates of 20 MFlops ¢n a learning problem with n=10 in-
put dimensions and o =5 output dimensions, using a linear local model. This leads to a
lookup time of approximately 15 milliseconds on a database of m = 1000 points.

Tuning The Fit Parameters

In the past we have used off-line global cross validation ([41] to estimate reasonable values

for the fit parameters: the distance metric s;, the parameters that define the weighting func-

tion w, = f(d}), and the ridge regression parameters A ;- Since we are using a local model.
that is linear ini the unknown parameters, we can compute derivatives of the cross valida-.
tion error ¢, = y, — y, with respect to the fit parameters:

de, de. Oe,

AT
and minimize the sum of the squared cross validation error using a Levenberg-Marquardt
(nonlinear least squares) procedure (MINPACK, NL2SOL).

However, it is clear that these parameters should depend on the location of the query
point. In this section we describe new procedures that estimate local values of the fit pa-
rameters optimized for the site of the current query point. We want to demonstrate the dif-
ferences between local and global fitting in an examnple where we only focus on the kemnel
width k of a Gaussian weighting function (3.7). In Figure 2a, a noisy data set of the func-
tion y = x —sin’(22x>) cos(22x*) exp(x*) was fitted by locally weighted regression with a
globally optimized, i.e. constant, k. In the left half of the plot, the regression starts to fit
noise because k had to be rather small to fit the high frequency regions on the right half of
the plot. The prediction intervals, which will be introduced below, indicate high uncer-
tainty in several places. To avoid such undesirable behavior, a local optimization criterion
is needed. Standard lincar regression analysis provides a series of well-defined statistical
tools to assess the quality of fits, such as coefficients of determination, t-tests, F-test, the
PRESS-statistic, Mallow’s C,-test ([23], confidence intervals, prediction intervals, and
many more (e.g., [29]). These tools can be adapted to locally weighted regression. We do
not want to discuss all possible available statistics here but rather focus on two that have
proved to be useful.
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Cross validation has a relative in linear regression analysis. the PRESS residual erro-.
The PRESS statistic performs leave-one-out cross validation computationally very efficient
by not requiring recalculation of the regression parameters for every excluded point. Table
1 in Appendix A shows how the PRESS residual can be expressed as a mean squared cross
validation error ASE_ . In Figure 2b, the same data as in Figure 2a was fitted by adjust-
ing k to minimize MSE, . at each query point. The outcome is much smoother than that
of global cross validation, and also the prediction intervals are narrower. It should be not«.d
that the exwrapolation properties on both sides of the graph are quite appropriate (¢compared
to the ' 'nown underlying function), in comparison to Figure 2a and Figure 2c¢.

— y-pradicted

prediction Interval -

noisy data

0.5 e [ e
0.2 0 Q0.2 0.4 0.6 0.8 1 1.2
(5

Figure 3:  Influence of outliers on LWR: (a) no outlier removal, (b) with outlier removed

Prediction intervals I, are expected bounds of the prediction error at a query point
x,. Table 1 gives the appropriate definition for LWR; its derivation can be found in most
text books on regression analysis (e.g., [29]). Besides using the intervals to assess the con-
fidence in the fit at a certain point, they provide another optimization measure. Figure 2¢
demonstrates the result when applying this statistic for optimizing & at each query point.




Again. the fitted curve is significantly smoother than the global cross validation fit. A
rather interesting and also typical effect happens at the very right end of the plot. When
starting to extrapolate, the prediction intervals suddenly favor a global regression instead of
the local regression, i.e., the k& was chosen to be rather large. It turns out that in local cpti-
mization one always finds a competition between local and global regression. But sudden
jumps from one mode into the other take place only when the prediction intervals are so
large that the data is not trustworthy anyway.

Assessing The Quality of the Local Model

Both the lucal cross validation error MSE,,,, and the prediction interval I, may serve to
assess the quality of the local fit:

MSE I'=-r
Qp =r—2= or Q. =19
c c
The factor ¢ makes 25 dimensionless and normalizes it with respect to some user defined
quantity. In our applications, we usually preferred Q. based on the prediction intervals,
pp fit p

which is the more conservative assessment.

Dealing with Outliers

Linear regression analysis is not robust with respect to cutliers. This also holds for locally
weighted regression, although the influence of outliers will not be noticed unless the out-
liers lie close enough to a query point. In Figure 3a we added three outliers to the test data
of Figure 2 to demonstrate this effect; the charts in Figure 2 should be compared to Figure
2¢. [27] applied the median absolute deviation procedure from robust statistics [18] to
globally remove outliers in LWR. We would like to localize our criterion for outlier re-
moval. The PRESS statistic can be modified to serve as an outlier detector in LWR. For
this, we need the standardized individual PRESS residual ¢, . (see Table 1, Appendix A).
This measure has zero mean and unit variance. If, for a given data point x;, it deviates
from zero more than a certain threshold, the point can be called an outlier. A conservative
threshold would be 1.96, discarding all points lying outside the 95% area of the normal dis-
tribution. In our applications, we used 2.57 cutting off all data outside the 99% area of the
normal distribution. As can be seen in Figure 3b, the effects of outliers is reduced.

The Shi*ting Setpoint Exploration Algorithm

Learning algorithms which assume no a priori structure of the world often face the problem
of sparse data in high dimensional spaces. Random exploration in order to build models of
such worlds will take a very long time. Random exploration in an unknown world may also
cause the system to enter unsafe or costly regions of operation. We want to develop an ex-
ploration algorithm which explicitly deals with such problems.




The shifting setpoint algorithm (SSA) attempts to decompose the control problem
1nto two separate control tasks on diffcrent ime scales. At the fast ime scale, it acts as a
nonlineur regulator by trying to keep the controlled systemn at some chosen setpoints. On a
slower time scale, the setpoints are shufted to accomplish a desired goal. The SSA tries to
explore the world by going to the fringes of its data support in the direction of the goal. It
sets the setpoints in the friniges unul statistically sufficient data has been collected to make
a {urther step towards the goal. In this way the SSA builds a narrow tube of data support in
wauch it knows the world. This data can be used by more sophisticated control aigorithms
for planning or further expinration.

We want to graphically illustrate the algorithm in a simple example of a mountain car
(Figure 4) [26]. The task of the car is to dri . at a given constant horizonral speed x,,,,.,
from the left to the right of the picture. x,,,., need not be met precisely: the car should
also minimize its fuel consumption. Laitially, the c~r knows nothing about the world and
cannot look ahead, but it has noisy feedback of its position and velocity. Commands,
which correspond to the thrust F of the motor, can be generated at SHz.

The mountain car starts at its start point with one arbitrary initial action for the first
time step; then it brakes and starts all over again, assuming the system can be reset some
how. The discrete one step dynamics of the car are modeled by an LWR forward model:

Xowe = f'(xmm,,F). where x=(x,x). 4.1

After a few trials, the SSA searches the data in memory for the point (x ,F,x’

)T
currens? nexs ' best

whose outcome X,,,, can be predicted with the smallest local confidence interval, Note that
this does not imply that |x,,,, — X,,.| is the smallest since we have noise in the data, This
best point is declared the setpoint ot this stage:

(x.zf‘.in’FS’xI".out )T = (xZumm'F'g:ut )Im' (4‘2)
and its local linear model results frem a corresponding LWR lookup:
X ou = T(Xs 1, Fs) = AXy , +BF; +c. (4.3)

Based on this linear model, an optimal LQ controller (e.g., [13]) can be constructed by
miniraizing the cost:

J= E((Kk - Xsa) QX =X, )+ 7(F, - Fs)z} (4.4)
A=l

of the regulator problem:
xh-l - xS.om = A(xk - xS,m) + B(Fl . FS) ] (4'5)

where Q and r are weight factors in matrix or scalar form, respectively. Solving this
problem results in the control law:




Fo=-R'x . -\ VeF, "3 4y

F7 iy the opumal commuand unders the cost J W go trom the cument state x . o the set-
point x, , atthis stage This does not mean that the mountain car will actually reach x,
after applying F . the opumal control tramework only guarantees a step towards the goal
which reduces the magnitude of the value tuncuon. In the given problem it will trade speed
accuracy tor fuel consumpuion. the compromuse between the two factors 1s reflected in the
choice of Q and r  After these calculations, the mountaun car learned one contolled action
for the first ume step. However. since the inttial acuon was chosen arbitranly, x,,_, will be
sigamlficantly away from the desired speed x,,...,. A reduction of this error i1s achieved as
follows. First. the SSA repeats to do one step acuons with the LQ controller (which is up-
dated with every new data poini) untid sufficient daxa was collected to reduce the size of the
prediction intervals of LWR lookups for (x[,,. F,) (4.3) below a cenain threshold. Then it
shifts the setpoint towards the goal according to the procedure:

1) calculate the error of the predicted output state: T 0 = X pired = X5 0w
2)  take the derivative of the error with respect to the command F; from a LWR
lookup for (x,.u.F,) (cf. 4.3):

derr,,, oerr. ., ox; ox; .
oW ow om ow -B, 4.7
OF, o OF,  OF, (*7)

and calculate a correction AF, from solving:
-BAF; =qaerr; (4.8)

c.g.. by singular value decomposition {31}, a €[0,1] determines how much of
the error should be compensated for in one step.

3) update F;: F; = F; - AF; and calculate the new x;,, with LWR (4.3).

4)  assess the fit for the updated setpoint with prediction intervals. If the quality is

above a certain threshold, continue with 1), otherwise terminate shifting.

In this way, the output state of the setpoint shifts towards the goal until the data sup-
port falls below a threshold. Now the mountain car performs severai new trials with the
new setpoint and the correspondingly updated LQ controller. After the quality of fit statis-
tics rise above a threshold, the setpoint can be shifted again. As soon as the first stage’s
setpoint reduces the error x,,,., - X;,,, t0 become close enough to zero, a nzw stage is
created and the mountain car tries to move one step further in its world. The entire proce-
dure is repeated for each new stage antil the car knows how to move across the landscape
along its line of setpoints with the associated LQ controllers. Figure 4b and Figure 4c show
the thin band of data which the algorithm collected in state space and position-action
space. These two pictures together form a narrow tube of knowledge in the input space of
the forward model. The car never tried more than one exploration step into unknown terri-
tory and thus increased its probability of being safe to a high level.
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Figure 4: The mountain car: (a) landscape across which the car has to drive at cons-
tant velocity of 0.8 mvs, (b) contour plot of data density in phase space as generated
by using multistage SSA, (c) contour plot of data density in position-action space
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During the times where the setpoint statistics indicate insufficient data support to
continue shifting, data collection is left to the randomness of the task dynamics. Thus the
reduction of parameter uncertainty of the setpoint’s local model also depends on this
stochastic process. In order to identify the local model correctly, the stochastic process
must provide data in all dimensions of the input and output space. If not, the regression
problem (3.1a) may be ill-conditioned, resulting in bad estimates of the local model. Such
situations were addressed by Fel'dbaum [17] as the dual control problem. In his formula-
tions, the optimal command tries to minimize the cost and the uncertainty at the same time.
So far, only expensive numerical solutions based on dynamic programming have been
found to this problem [4, 7]. As an inclegant but effective way out, we add some small
amount of random noise to the command F°. The next section will demonstrate ihe impor-
tance of this measure.

Exploration has many facets. Depending on the task to be solved, random explora-
tion, exploration towards unknown state space regions, and exploration towards reduction
of uncertainty, etc., have been suggested [39]. The SSA exploration algorithm is goal di-
rected and uncertainty driven under the premise not to dare any aggressive exploration
outside the current data suppot:. It is targeted at working in high dimensional environments.
where aggressive exploration would spend too much time in inappropriate and possibly
dangerous regions. It is well suited for a real machine for which experimentation is time-
consuming. The SSA requires the existence of explicit goals. However, it is not always
necessary to know these goals in advance but rather let the goals develop out of the task
definition, as will be shown in the next section. The SSA should be generally applicable to
problems which allow a decomposition in a static exploitation and a slow!y moving explo-
ration time scale, which have one time differentiable forward dynamics, and where the
noise does not exceed the capabilities of the LQ controllers.

A. System For Learning Experiments: Robot Juggling

We have constructed a system for experiments in real-time motor learning [40]. The task is
a juggling task known as “devil sticking”. A center stick is batted back and forth between
two handsticks (Figure Sa). Figures 5b,c show a sketch and photograph of our devil stick-
ing robot. The juggling robot uses motor | and motor 2 to perform planar devil sticking.
Hand sticks with springs and dampers are mounted on the robot to implement a passive
catch: the center stick does not bounce when it hits the hand stick and requires an active
throwing motion by the robot. For the time being, the problem is simplified by the center
stick being constrained by a boom to move on the surface of a sphere (Figure 5b), and mo-
tor 3 is not used. For moderate amplitudes these movements are approximately planar. The
boom also provides a way to measure the current state of the center stick. The task state is
the predicted location at which the ballistic flight of the center stick intersects with the




hand stick held in an_arbitrary but fixed nominal position (x,,....- xmm,,w,)r. We
chose (x, omnai+ y,,lm,,,,,m,) to be the hand stick position of the “upright” robot as shown in
Figure 5b. As soon as the center stick does not touch the throwing hand stick anymore,
standard ballistics equations for the flight of the center stick are used to map flight trajec-
tory measurements (x(r),y(¢),8(¢)) into the S-diinensional csumated task state vector, t.e.,
the impact state with the other hand stick held at (X, ,mai+ MM,) :

= (p.0.%.3.8)" (5.1)

p is the distance of the devil stick’s center or mass to the impact point hand stick—devil
stick (Figure 5b). The task command is gwcn by a displacement (x,, y,,) of the hand stick
from the nominal position (x,, —— ,,D,m,) , a center stick angular velocity threshold to
trigger the start of a throwing motion &,, and a throw velocity vector (v v ) of the hand
stick, measured at point where tine hand stick is attached to the robot .

u=(x,9,.6,v,.,) . (5.2)

The dynamics of throwing the devilstick are thus parameterized by 5 state and 5 task
commands, resulting in a 10/5-dimensional input/output model for each hand. Every time..
the robot catches and throws the devil stick it generates an experience vector of the ft m

(xI.ul.xL,)". (5.3)

where x, is the current state, u, is the action performed by the robot, and x,,, is the state
of the center stick that results, Izitially we explored learning an inverse model of the task,
using nonlinear “deadbeat’ control to eliminate all error on each hit. Each hand had its own
inverse model of the form:

a, =1(x,.x,.,). (5.4)

Before each hit, the system looked up a command with the expected impact state of the
devilstick and the desired state:

a, =1"(x,.x,). (5.5)

Inverse model learning was successfully used to train the system to perform the devil stick-
ing task. Juggling runs up to 100 hits were achieved. The system incorporated new data in
real time, and used databases of several hundred hits. Lookups took less than 15 millisec-
onds, and therefore several lookups could be performed before the end of the flight of the
center stick. Later queries incorporated more measurements of the flight of the center stick
and therefore more accurate predictions of the state x, of the task. However, the system
required substantial structure in the initial training to achieve this performance. The system
was started with a default command that was appropriate for open loop performance of the
task. Each control parameter was varied systematically to explore the space near the de-




fault command. A global linear modz] was made of this initial data, and a linear contioller
based on this model was used to generate an initial training set for the memory-based sys-
tem (approximately 100 hits). Learning with no initial data was not possible.

(b) », K
' (¢) INSERT PHOTO

Figure 5. (a) an illustration of devil sticking, (b) sketch of our devil sticking robot: the flow of force
from each motor into the robot is indicated by differens shadings of the rvbot links, and a position
change due to an application of motor 1 or motor 2, respectively, is indicated in the small sketches; (c)
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We also experimented with learning based on both inverse and forward models. After
a command is generated by the inverse model, it can be evaluated using a memory-based
forward model with the same data:

%, =f(x,,a,). (5.6)
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Because it produces a local linear model, the LWR procedure generates estimates of the
derivatives of the forward model with respect to the commands as part of the estimated pa-
rameter vector [ (analog to 2.18 or 4.3). These derivatives can be used to find a correction
to the command vector that reduces errors in the pradicted outcome based on the forward
model:

-

xAﬁ:iM-xd. (3.7)

where the goal state x, was calculated off-line from a comparison with human juggling.
The pseudo-inverse of the matrix Jf / du is used to solve the above cquaticn for Ad, in
order to handle situations in which the matrix is singular or a different number of com-
mands and states exists (which does not apply for devil sticking). The process of command
refinement can be repeated until the forward model no longer produces accurate predic-
tions of the outcome. This will happen when the query to the forward model requires sig-
nificant extrapolation from the current database.

We investigated this method fo:i incremental learning of devil sticking in simulations
whose dynamics were adopied from the real machine. The outcome, however, did not meet;
expectations: without sufficient initial data around the setpoint, the algorithm did not work.t
Two main reasons can be held responsible:

i)  Similar to the pure inverse model approach, the inverse-forward model acts as a
one-step deadbeat controller. One-step deadbeat control applies large com-
mands to correct for deviations from the setpoint. In the presence of errors in
the model, this is detrimental since it magnifies the model errors. Additionally,
the workspace bounds and command bounds of our devil sticking robot limit
the size of the commands.

ii)  Due to the nonlinearities in the dynamics of the robot, the 10-dimensional input
space of the forward model suffers from the first symptoms of Bellman's
“curse of dimensionality”. Error reduction as described in (5.7) only works if
sufficient data exists at the query sites, The inevitable model errors will make
the robot explore randomly, leading to dispersed data, giving little chance for
model improvements. Imagine we had to place data in a (hyper-)cube of nor-
malized edge length 0.1. A 3-dimensional input space has 103 such cubes leav-
ing some probability to finaliy arrive at the goai. A 10-dimensionali state space,
however, has 1010 such cubes - a prohibitive number for random exploration.

Thus, two ingredients had to be added to the devil sticking controller:

a)  Control must start as soon as possible with the primary goal to increase the data den-
sity in the current region of the state-action space, and the secondary goal to arrive at
the desired goal state.
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b) Control actions must avoid deadbeat properties and must be planned to go to the goal
in multiple steps.

- Throw (o leht

Data Density

Goal State of

Goal Stete of
Lok Hand

(c)

Figure 6:  Abstract illustration how the SSA algorithm collects data in space: a) sparse data after the
Sirst few hits; b) high loca! data density due to local control in this region; c) increased data density on
the way to the goals dus to shifting of he setpoirus; d) ridge of daws densisy after the goal was reached

Both requirements are fuifilled by the shifting setpoint algorithm (SSA). Applied to devil
sticking, the SSA proceeds as follows:

(1) Regardless of the poor juggling quality of the robet (i.c., at most two or three hits per
trial), the SSA makes the robot repeat these initial actions with small random vertur-
bations until a cloud of data was collected somewhere in state-action space of each
hand. An abstract illustration for this is given in Figure 6a to 6b.




(2) Each point in the data cloud of each hand is used a: a candidate for a setpoint of the
corresponding hand by trying to predict its output from its input with LWR. The
point achieving the narrowest local confidence interval becomes the setpoint of the
hand and an LQ controller is calculated for its local linear model. By means of these
controllers, the amount of data around the setpoints can quickly and rather accurately
be increased until the quality of the local models exceeds a certain statistical thresh-
old.

(3) At this point, the setpoints are gradually shifted towards the goal setpoints uatil the
data support of the local models falls below a statistical value. Shifting occurs for
both input state and output state of the setpoints (cf. Eq.4.2). After shifting, the kernel
k (cf. Eq. (3.7)) is optimized by minimizing the local cross validation error MSE,, ..
(In Figure 6, the goal setpoints are given explicitly, but they actually develop auto-
matically from the requirement to throw the devilstick increasingly close to a place,
in which the other hand has data suppoit, i.e.,
X $outdesived.iop = Xs.inngne» 400 vice versa for the other hand)

xS.m.damd.lcﬂ = x.S‘.om.rl;lll’

(4) The SSA repeats itself by collecting data in the new regions of the workspace until
the setpoints can be shifted again (Fig. 6¢). The procedure terminates by reaching the
goal, leaving a (hyper-) ridge of data in space (Figure 6d).

The LQ controllers play a crucial role for devil sticking. Although we statistically
exploit data thoroughly, it is nevertheless hard to build good local linear models in the high
dimensional spaces, particularly at the beginning of learning. LQ control has useful robust-
ness even if the underlying linear models are imprecise.

We tested the SSA in a noise corrupted simulation and on the real robot. Learning
curves are given in Figure 7. The learning curves are typical for the given problem. It takes
roughly 40 trials before the setpoint of each hand has moved close enough to the other
hand’s setpoint. For the simulation (Figure 7a) a break-through occurs and the robot rarely
loses the devilstick after that. In Figure 7b, the real robot learning curve is shown. The real
robot takes more trials to achieve longer juggling runs, and its performance is not very
consistent. This was due to the fact that the stochasticities of the robot did not sample the
full state space sufficiently well during the data collection phases of the SSA. As pointed
out in the dual control paragraph of the SSA section, we now added some random noise to
the controls generated by the LQ controllers, Figure 7c shows the remarkable improvement
in performance. On average, human beings need roughly a week o* 1 hour practicing a day
before they learn to juggle the devilstick. With respect te this, the robot learned very
quickly. But the stability of our controllers is not global so far and will require future work.
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i Discussion

In this paper we adopted a nonparametric approach to learning control. By means of locally
weighted regression we built models of the world first, and exploited the models subse-
quenily with statistical methods and algorithms from optimal control to design controllers.
i Despite the computational complexity of these methods, we demonstrated the usefulness of

) our algorithms in a real-time implementation of robot learning.
22 *




Using models for control according to the certainty equivalence principle is nothing
new and has been supported by many researchers in the last years (e.g., [3, 38, 22, 24]).
Using memory-based or nonparametric models, however, has only recently received in-
creasing interes:. One of the favorable advantages of memory-based modeling lies in the
least commitmant strategy which is associated with it. Since all data is kept in memory, a
lookup can be optimized with respect to the few open architectural parameters. Parametric
approaches do not have this ability if they discard their training data; if they retained all the
training data they essentially become memory-based. As we demonstrated in our LWR ap-
proach to nonparametric modeling, s:veral established statistical methods may be adopted
to assess the quality of a model. These statistics form the backbone of the SSA exploration
algorithm. So far we have only examined some of the most obvious statistical tools which
directly relate to regression analysis. Many other methods may be suitable as well, particu-
larly in a Bayesian framework.

Training a memory-based model is computationally inexpensive, as the data is sim-
ply stored in a memory. Training a nonlinear parametric model typically requires an itera-
tive search for the appropriate parameters. Examples of iterative search are the various
gradient descent techniques used to train neural network models (e.g., [20]). Lookup or:
evaluating a memory based model is computationally expensive, as described in this paper.-
Lookup for a nonlinear parametric model is often relatively inexpensive. If there is a situa--
tion in which a fixed set of training data is available, and there will be many queries to the
model after the training data is processed, then it makes sense to use a nonlinear parametric
model. However, if there is a continuous stream of new training data intermixed with
queries, as there typically is in many motor learning problems, it may be less expensive to
train and query a memory-based model then it is to train and query a nonlinear parametric
model.

A question that often arises with memory-based models is the effect of memory limi-
tations. We have not yet needed to address this issue in our experiments. However, we plan
te explore how memory use can be minimized based on several methods. One approach is
to only store “surprises”. The system would try to predict the outputs of a data point before
trying to store it. If the prediction is good, it is not necessary to store the point. Another
approach is to forget data points. Points can be forgotten or removed from the database
based on age, proximity to queries, or other criteria. Because memory-based learning re-
tains the original training data, forgetting can be explicitly controlled.

That computational complexity does not necessarily limit real time applications was
demonstrated with our successful devil sticking robot. We are able to do lookups for mem-
ory-based local models in less than 15ms for a thousand data points modeling a 10 to 5
mapping, and we are able to build on-line LQ controllers in another Sms. The initial short-
comings of our deadbeat inverse or inverse-forward model controllers are not due to the
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LWR learning algorithm but rather to the inherent problems of this kind of contral. As has
been pointed out by Jordan and Rumelhart [22], inverse models are not goal-directed and
perform data sampling in action and not state space. They do not establish a connection be-
tween a certain sensation and a certain action but rather a connection between two sensa-
tions. Hence, they do not learn from bad actions. A forward model overcomes these prob-
lem. Pure forward model controllers, however, are still deadbeat controllers which try to
cancel the plant dynamics in one step. This results in large commands if the system devi-
ates only moderately from its desired goal and conflicts with the workspace bounds and
command bounds of our robot. Additionally, modeling errors are strongly amplificd by
deadbeat control. Accurate data sampling, as it is necessary in high dimensional spaces,
becomes thus rather difficult.

Due to the statistical properties of locally weighted regression, a simple exploration
algorithm like the shifting setpoint algorithm is powerful enough to accomplish the desired
task. Deadbeat control was replaced by LQ control which naturally blends into the LWR
framework. By no means was the SSA algorithm intended to replace high-level controllers.
Indeed, it remains to be explored in how far the chaining of individual LQ controllers is
actually robust, and whether an approach from trajectory optimization [13] would not bex
more appropriate. In favor of the SSA algorithm stands its easy implementation for real-
time systems.

Two crucial prerequisites entered our explanations on robot learning. First, we as-
sumed we know the input/output representations of the task, and second, we were able to
generate a goal state for the SSA exploration. A good choice of a representation is crucial
in order to be able to accomplish the goal at all [33, 35], and we have very limited insight
so far how to automate this part of the learning process. Of equal importance is a good
choice of a goal state. In devil sticking, the goal state developed out of the necessity that
the left and right hand have to cooperate. The initial action, however, which was given by
the experimenter, clearly determined in which ballpark the juggling pattern would lie.
Certain patterns of devil sticking are easier than others [34], and we picked an initial action
of which we knew that it was favorable. One part of our future work will address these is-
sues in more detail in that we search for good initial actions and strategies to approach a
task {6].

The paper demonstrated that a real robot can indeed learn a non-trivial task. As pointed out
above, by taking input/output representations and good learning goals as given, a large
porticn of the task was already solved in advance. Solving the remaining problems became
practicable mainly because of the characteristics of the LWR leaming method. The local
linear modeis that this algorithm generated at every query point allowed us to make use of
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optimal control techniques which added useful robustness to the controllers. Since LWR is
memory-based, the local linear models could be optimized with respect to statistical uncer-
tainty measures. These measures also served as the basis of the SSA exploration algorithm.
Such statistical tools are not generally available in learning. LWR is particularly suited to
exploit statistics since it originates from a statistical method, and we could thus easily as-
sure compatibility of the statistics and the learning algorithm. As a last point, LWR does
not suffer from problems of interference when being trained on new data. Interference
means a degradation of performance in one part of the model when training the model with
data relevant for different parts. Such an effect could happen during SSA shifting if a
parametric learning method were applied. But since lookups with LWR are affected only
by a small cloud of data in the neighborhood of the query point, interference problems are
greatly reduced.

Our future work will focus on extending ZWR model-based control to multistage
problems in the optimal control domain. Devil sticking should not only be stable within the
validity of the local linear controllers but rather exhibit global stability. This requires non-
linear optimal control and planning techniques which we are currently exploring. Future
work must furthermore address how we could approach tasks in which complete measure--:
ments of the states are not available, or what constitutes a state is not even known. '
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Appendix A

The conversion from unweighted linear regression to locally weighted regression analysis
is done mostly by inserting the matrix W at the appropriate sites. The definitions of the pa-
rameters n’ and p’, however, need some explanation. Iimagine the weighting function is not
a soft-weighting function (e.g., a Gaussian) but rather a hard-weighting function clipping
off points beyond a certain threshold: w, =1 if d°<e, otherwise w, =0.Redefining
n to n’ accommodates such a k-nearest neighbor weighting and transforms the n-point re-
gression problem to an k-point regression. If p stays unchanged, all statistics would corre-
spond to unweighted regression. Subtraction of p from n to calculate variances aims at
achieving unbiased estimators. For LWR, it is easily possible to find the case where n’<p.
In the ~bove mentioned k-nearest neighbor exampie, this would mean that we do not have
sufficicnt data support for the regression model. For soft-weighting functions, the problem
cannot be resolved so clearly; we could always imagine scaling up all weights by a con-
stant factor so that Z:_‘w,’ =n which would not change the regression variables. LWR
weights data with respect to each other and not absolutely. Applying n’ instead of n to cal-
culate variances or mean squared errors makes such measures invariant towards mere
weight scaling; this can easily be verified by setting w, =w, - const.. Defining p’ in the
given way avoids problems when n’<p. The bias introduced this way should diminish with
an increasing number of data points in memory. One could argue in favor of neglecting p
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entirely, but incorporating it in the given way makes the statistics stay on the more pes-
simistic side which seems reasonable.

The only statistics which see a direct influence of a weight scaling are the prediction
intervals and the standardized individual PRESS residuals. Restricting the weights to the
range [0,1] and requiring that the weight of a point with zero Euclidean distance from the
lookup point equals 1 resolves this problem. The dependence of the t-value on n’-p’ in the
prediction intervals increases the t-value and thus the prediction intervals with diminishing
n'. The smallest value t may acquire is for n=n’, i.e., unweighted regression. The standard-
ized individual PRESS residual ¢, ,,,, is proportional to the magnitude of the i-th weight.
As we pointed out in Section x3, this measure has zero mean and unit variance. With in-
creasing distance from the current query point, it will be weighted down, i.e., the likeli-
hood of being an outlier diminishes even if ¢; ., is rather large. As the weights cannot be
larger than 1, ¢, .. cannot assume larger values as for unweighted regression.

It must be pointed out that statistics literature provides much more sophisticated and
mathematically exact statistics for locally weighted regression {19, 28, 14, 11]. However,
most of these measures require the estimation of Hessians and/or data densities which for-
high dimensional problems are not readily adapted without numerical problems. Our LWR?

statistics are used to tune fit parameters and need not give precise statistical assessments.

Table 1:
Unweighted Linear Regression j Locally Weighted Regression ]
number of data )
in regression n n, we define: n’= 3 w?,
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x X
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Abstract

This paper explores a memory-based approach to robot learning, using memory-based ueural
networks to learn models of the task to be performed. Steinbuch and Taylor presented neural
network designs to explicitly store training data and do nearest neighlior lookup in the. early:
1060s. In this paper their nearest neighbor network is augmented with a local model network,.
which fits a local model to a set of nearest neighbors. This network design is equivalent to a
statistical approach known as locally weighted regression, in which a local model is formed to
answer each query, using a weighted regression in which nearby points {similar experiences) are
weighted more than distant points (less relevant experiences).

The memory-based neural network architecture can represcant smooth nonlinear functions,
yet has simple training rules with a single global optimum. The paper explains how an appro-
priate distance metric or measure of similarity can be found, and how the distance metric is
used. We localize the architectural parameters of the approach, so that parameters such as dis-
tance metrics are a function of the current query point instead of being global. The paper also
explains how irrelevant input variables and terms in the local model are detected. Statistical
tests are presented for when a local model is good enough and sampling should be moved to a
new area. Our methods explicitly deal with the case where prediction accuracy requirements
exist during exploration. By gradually shifting a center of exploration and controlling the speed
of the shift based on local prediction accuracy, a goal-directed exploration of state space takes
place along the fringes of the current data support until the task goal is achieved.

We illustrate this approach by describing how it has been used to enabie a robot to learn &

difficult juggling task.

1 Introduction

An important problem in motor learning is approximating a continuous function from samples of
the function's inputs and outputs. This paper explores a neural network architecture that simply
remembers experiences (samples) and builds a local model to answer any particular query (an input
for which the function's output is desired). Steinbuch (Steinbuch 19861, Steinbuch and Piske 1963)
and Taylor (Taylor 1959, Taylor 1960) independently proposed neural network designs that explicitly




remembered the training experiences and used a local representation to do nearest neighbor lookup.
They pointed out that this approach could be used for contro!. They used a layer of hidden units to
compute an inner product of each stored vector with the input vector. A winner-take-all circuit then
selected the hidden unit with the highest activation. This type of network can find nearest neighbors
or best matches using a Euclidean distance metric (Kazmierczak and Steinbuch 1963). In this paper
their nearest neighbor lodkup network (which I will refer to as the memory network) is augmented
with a local model network, which fits a local model to a set of nearest neighbors.

The memory-based neural network design can represent smooth nonlinea: functions, yet has
simple training rules with a single global optimum for building a local model in response to a query.
Qur philosophy is to model complex continuous functions using simple local models. This approach
avoids the difficult problem of finding an appropriate structure for a global model and allows complex
nonlinear models to be identified (trained) quickly. A key idea is to form a training set for the local
model network after a query to be answered is known. This approach allows us to include in the
training set only relevant experiences (nearby samples), and to weight the experiences according to
their relevance to the query. The local model network, which may be a simple network architecture
such as a perceptron, forms a model of the portion of the function near the query point, much as
a Taylor series models a function in a neighborhood of a point. This local model is then used to
predict the output of the functicn, given the input. After answering the uery, a new local model is
trained to answer the next query. This approach minimizes interference between old and new data,
and allows the range of generalization to depend on the density of the samples.

Currently we are using polynomials as the local models. Since the polynomial local models are
linear in the unknown parameters, we can estimnate these parameters using a linear regression. We
use cross validation to choose an appropriate distance metric and weighting function, and to help find
irrelevant input variables and terms in the local model. In this approach cross validation is no more
computationally expensive than answering a query. This is quite different from a parametric neural
network, where a new network must be trained for each cross validation training set. We extend
this approach to give information about the reliability of the predictions and local linearizations
genevated by locally weighted regression. This allows the robot to monitor its own skill level and
guide its exploratory behavior. The polynomial local models allow us to efficiently estimate local
linear models for diffsrent points in the state space. These local linear models are used in several
ways during learning.

We use several forms of indirect learning, where a model is learned and then control actions
are chosen based on the model, rather than direct learning, where appropriate control actions are
learned directly. Our starting point for modeling is that we do not kmow the structure or form of
the system to be controlled. We assume we do know what constitutes a state of the system, and
that we measure the complete state. Later papers will discuss how we could apprcach tasks in which
complete measurements of the state are not available, or what constitutes a state is not even known.

The learned models are multidimensional functions that are approximated from sampled data (the
previous experiences or attempts to perform the task). Goals for function approximation in robot
learning go beyond being able to represent the training set and generalize appropriately. The learned
models are used in a variety of ways to successfully execute the task. We would like the models to
incorporate the latest informavion. The models will be continuously updated with a stream of new
training data, so updating a model with new data should take a short period of time. There are
also time constraints on how long it can take to use a model to make a prediction. Because we are
interested in control methods that make use of local linearizations of the plant model, we want a




representation that can quickly compute a local linear model of the represented transformation. We
also need to be able to find first (and potentially second) derivatives of the learned function. We
would like to minimize the negative interference from learning new knowledge on previously stored
information. The ability to tell where in the input space the function is accurately approximated
is very useful. This is typically based on the local density of samples, and an estimate of the local
variance of the outputs. This ability is used in iterative use of the model to determine when to
terminate search and collect more data.

2 Locally Weighted Regression

As the most generic approximator that satisfies many of these criteria, we are exploring a version of
memory-based learning technique called lccally weighted regression (LWR) (Cleveland et al. 1988,
Atkeson 1990). A memory-based learning (MBL) system is trained by storing the training datain a
meraory. This allows MBL systeras to achieve real-time learning. MBL avoids interfereace between
new and old data by retaining and using all the data to answer each query. MBL approximates
complex functions using simple local models, as does a Taylor series. Examples of types of local
models include nearest neighbor, weighted average, and locally weighted regression (Figure 1). Each
of these local models combine points near to a query point to estimate the appropriate cutput.
Nearest neighbor local models simply choose the closest point and use its output values Weighted
average local models sum the outputs of nearby points weighted by their distance to the query point.
Locally weighted regression fit a surface {0 nearby peints using a distance weighted regressiomn.

The weights in the locally weighted regression depend on parameters used to calculate a distance
metric and a weighting function, and stabilize the solution to the regression. We will refer to these
parameters as “architectural parameters”. These parameters can be optimized automatically in a
local fashion using cross validation.

Locally weighted regression uses a relatively conuplex regressior. procedure to form the local model,
aud is thus more expensive than nearest neighbor and weighted average memory-based learning
procedures. For zach query a new local model is formed. The rate at which local models can be
formed and evaluated limits the rate at which queries can be answered. This section describes how
locally weighted regression can be implemented in real time.

2.1 Ah example

As an example of modeling a function using localiy weighted regression, we will consider a problem
from motor control and robotics, two-joint arm inverse dynamics. We will predict torques at the
shoulder, 7, and elbow, 72, on the basis of joint positions, 6, and 8;, joint velocities, 8, and 8, and
joint accelerations, &y and 63. We use this example because we already know the idealized function,
and wili be able to assess how well the iocally weighted regression procedure is doing and interpret
the parameters used to improve the fit. In an aclual application a structured model (An, Atkeson,
and Hollerbach 1988, for example) would be used to fit the dynamics data, and the locally weighted
regression wou'd be used to fit the errors (residuals) of the stiuctured model.

We hLave a query point (67,63, 85,85,6°,6%) for which we want to predict the shoulder and elbow
torques. We will first show how an unweighted regression can be used to form a global model. Then
we will show how a weighted regression can be used to form a local model appropriate to answer this
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particuiar query. For the purposes of this example we will assume a quadratic model is used in the
regression. In this dynamics example there are 28 terms in the quadratic model:

1 0y, 62, 91, éz, by, b2,
O1%0;, O1%82, O1%0;, 81463, 61481, 66,
6202, Opby, O30, 0346y, 6yx6,

by + 6y, 91*92, b1 %61, 0y 0y,

b2% 63, 678, éz*éz,

8, + 6y, 91*92,

02*02

whers 1 represents the constant term in the model.

Let us assume we have 1000 samples of the two joint arm dynamics function. To form a local
model of the shoulder torque involves finding estimates of the 28 terms or paramsters of the local
quadratic model. The equation to be solved is

Xg=y (1)

where X is a 1000 by 28 data matrix, in which each row has the 28 terms of the quadratic model
corresponding to a point (sample of the function), and each column corresponds to a particular term
in the quadratic model. 3 is the vector of 28 estimated parameters of the quadratic model, and y is
the vector of 1000 shoulder torques from the 1000 points included in the regression.

An uanweighted regression finds the solution to the normal equations:

(XTX) 5 = XTy (2)

The estimated parameters are used, with the query point, to predict the shoulder torque for the
query point. Another set of parameters are estimated for the elbow torque.

However, we assume the global quadratic model is not the correct model structure for predicting
the torques. These structural modeling errors imply that different sets of parameters are estimated
by the regression, given different data sets. The data set can be toilored to the query pocint by
emphasizing nearby points in the regression. The origin of the input data is first shifted by subtracting
the query point from each dats point. Then each data point is given a weight.

Unweighted regression gives distant points equel influence with nearby points on the ultimate an-
swer to thé query, for equally spaced data. To weight similar points more, locally weighted regression
is used. First, a distance is calculated from each of the stored data points (rows in the X matrix) o

the query point q: i
d;‘ = Zm,-(x‘, - q,)z (3)
i

For the robot arm dynamics example, d? is calculated for each poiat in the following way:
& = mi(61~6;)° + m}(62 - ;) + mi(6, — 6)°
+mi(9; — 63)* + m§(0 -~ 9‘) + m6(92 - 0’) {(4)

The superscript * indicates the query point, and the m; are the components of the distance metric.
The weight for each stored data point is a function or that distance:

wi = f(d?) (8)




Each row i of X and y is multiplied by the corresponding weight w;. A simple weighting function
just raises the distance to a negative power. The magnitude of the power determines how local the
regression will be (the rate of dropoff of the weights with distance).

w = dif- (6)

This type of weighting function goes to infinity as the query point approaches a stored data point.
This forces the locally weighted regression to exactly match that stored point. If the data is noisy,
exact interpolation is not desirable, and a weighting scheme with limjted magnitude is desired. One
such scheme, which we use in implementations on actual robots, is a Gaussian kernel:

w; = exp (-5-,;3‘-) (7)

The parameter k scales the size of the kerne! to determine how local the regression will bic.

A potential problem is that the data points may be distributed in such a way as to make the
regression matrix X nearly singular. Ridge regression (Draper and Smith 1981} is used to prevent
problems due to a singular data matrix. The following equation, with X and y already weighted, is
solved for 3:

(XTX+A)8=XTy | (8)

where A is a diagonal matrix with small positive diagonal elements A?. This is equivalent to adding
i extra rews to X, each Laving a single non-zero element, J;, in the ith column. Adding additional
rows can be viewed as adding “fake” data, which, in the absence of sufficient real data, biases the
parameter estimates to zero (Draper and Smith 1981). Another view of ridge regression parameters
is that they are the Bayesian assumptions about the apriori distributions of the estizaated parameters
(Seber 1977).

2.2 Assessing the computational cost

Lookup has three stages: forming weights, forming the regression matrix, and solving the normal
equations. Let us examine how the cost of each of these stages grows with the size of the data set
and dimeasionality of the problem. We will agssume a linear local model.

Forming and applying the weights involves scanning the entire data set, so it scales linearly
with the number of data points in the database (n). For each of d input dimensions there are a
constant number of operations, s¢ the number of operations scales linearly with the number of input
dimensions. Note that we can eliminate points whose distance is above a threshcld, reducing the
number of points considered in subsequent stages of the computation.

Each element of XTX and X7y is the inner (dot) product of two columns of X or y. The auchi-
tecture of digital signal processors is ideally suited for this computation, which consists of repeaied
multiplies and accumulates. The computation is ..1ear in the number of rows n and quadratic in the
number of columns (d? + d * 0), where d is the number of input dimensions and o is the number of
output dimensions.

Sclving the normal equations is done using a LDLT decomposition, which is cubic in the number
of input dimensions, and independent of the number of data points. Other more sophisticated and




more expensive decompositions, such as the singular value decomposition, do not need to be used
since the ridge regression procecdure guarantees that the normal equations will be well-conditioned.

The most straightforward paraile] implementation of locally weighted regression would distribute
the data points among several processors. Queries can be broadcast to the processors, and each
processor can weight its data set and form its contribution to XTX and XTy. These contributions
can be summed and the full normal equations solved on a single processor. The communication costs
are linear in the number of processors and quadratic in the number of columns (d? + d * 0), and
independent of the total number of points.

We have implemented the local weighted regression procedure on a 33MHz Intel i860 micro-
processor. The peak computation rate.of this processor is 66 MFlops. We have achieved effective
computation rates of 20 MFlops on a learning problema with 10 input dimensions and 5 output di-
mensions, using a linsar local model. This leads to a lookup time of approximately 20 milliseconds
on a database of 1000 points.

This memory-based approach can also be simulated using k-d tree data structures (Friedman,
Bentley. and Finkel 1977) on a standard serial computer and using parallel search on a massively
parallel computer, the Connection Machine (Hillis 1985).

2.3 Implementing locally weighted regression in & neural network

The memory network of Steinbuch and Taylor can be used to find the nearest stored vectors to the
current input vector. The memory network computes a measure of the distance between each stored
vector and the input vector in parallel, and then a “winner take all” network selects the nearest
vector (nearest neighbor). Euclidean distance has been chosen as the distance metric, because the
Euclidean distance is invariant under rotation of the coordinates used to represent the input vector.

The memnory network consists of three layers of units: input units, hidden or memory units,
and output units. The input units are fully connected to the hidden units. The squared Euclidean
distance between the input vector (i) and a weight vector (w)) for the connections of the input units
to hidden unit & is given by:

Ti - 2iTw, + wiw,

di = (i - Wb)T(i - W),) =i
Since the quantity ii is the same for all the hidden units, minimizing the distance between the input
vector and the weight vector for each hidden unit is equivalent to maximizing:
iTw, — 1/2wiw,
This quantity is the inner product of the input vector and the weight vector for hidden unit &, biased
by half the squared length of the weight vector. Maximizing this quantity using a winner take all
circuit allows the unit with the smallest distance to be selected.

Dynamics of the memory network neurons allow the memory network to output a sequence of
nearest neighbors. These nearest neighbors form the selected training sequence for the local model
network. Memory unit dynamics can also be used to allocate “free” memory units to new experier.ces,
and to forget old training points when the capacity of the memory network is fully utilized.

The local model network consists of only one layer of modifiable weights preceded by any number
of layers with fixed connections. There may be arbitrary preprocessing of the inputs of the local
model, but the local model is linear in the parameters used to form the fit. The local model network
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using the LMS training algorithm performs a linear regression of the transformed inputs against the
desired outputs. Thus, the local model network can be used to fit a linear regression model to the
selected training set. With multiplicative interactions between inputs the local model network can
be used to fit a polynomial surface (such as a quadratic) to the selected training set. An alternative
iraplementation of the local model network could use a single layer of “sigma-pi” units (Durbin and
Rumelhart 1989). :

This network design has simple training rules. In the memory network the weights are sizaply
the values of the components of input and output vectors, and the bias for each memory unit is just
half the squared length of the corresponding input weight vector. No search for weights is necessary,
since the weights are directly given Ly the data to be stored. The local model network is linear in
the weights, leading to a single optimwm which can be found by linear regression or gradient descent.
Thus, convergence to the glebal op‘imum is guaranieed when fornuing a local model {o answer a
particular query.

3 Related Work

Memory-based representations have a long history. Approaches which represent previous experier.ces
directly and use a similar experience or similar experiences to form a local model are often referred
to as nearest neighbor o1 k-nearest neighbor approaches. Local models (often polynomials) have
been used for many years to smooth time series (Sheppard 1912, Sherriff 1920, Whittaker and
Robinson 1924, Macauley 1931) and interpolate and extrapolate from limited data. Barnhill (1977)
and Sabin (1980) survey the nse of nearest neighbor interpolators to fit surfaces to arbitrarily spaced
points. Eubank (1988) surveys the use of nearest neighbor estimators in nonparametric regression.
Lancaster aud Salkauskas (1986) refer to nearest neighbor approaches as “moving least squares” and
survey their use in fitting surfaces to data. Farmer and Sidorowich (1988a, 1988b) survey the use of
nearest neighbor and local model approaches in modeling chaotic dynamic systems. Kawamura and
Nakagawa (1990) and Kawamura, Noborio, and Nakagawa (1990) describe approaches to memory-
based control of robots. Specht (1991) describes a memory-based neural network approach based on
a probabilistic model that motivates using weighted averaging as the local model. _

An early use of direct storage of experience was in pattern recognition. Fix and Hodges (1951,
1952) suggested that a new pattern could be classified by searching for similar patterns among a set of
stored patterns, and using the categories of the cimilar patterns to classify the new pattern. Steinbuch
and Taylor proposed a neural network implementation of the direct storage of experience and nearest-
neighbor search process for pattern recognition (Steinbuch 1961, Taylor 1959), and pointed out that
this approach could be used for comtrol (Steinbuch and Piske 1963). Stanfiii and Waltz (1986)
proposed using directly stored experience to lsarn pronunciation, using & Connection Machine and
parallel search to find relevant experience. They have also applied their approach to medical diagnosis
(Waltz 1987) and protein structure prediction.

Nearest neighbor approaches have also been used in nonparametric regression and fitting surfaces
to data. Often, a group of similar experiences, or nearest neighbors, is used to form a local model,
and then that model is used to predict the desired value for a new point. Local models are formed
for each new access to the memory. Watson (1964), Royall (1968), Crain and Bhattacharyya (1967),
Cover (1968), and Shepard (1968) proposed using a weighted average of a set of nearest neighbors.
Gordon and Wixom (1978) and Barnhill, Dube, and Little (1983) analyze such weighted average




schemes. Crain and Bhattacharyya (1967), Falconer (1971), and McLain (1974) suggested using a
weighted regression to fit a local pulynomial model at each point a function evaluation was desired.
All of the available data points were used. Each data point was weighted by a function of its
distance to the desired point in the regression. McIntyre, Pollard, and Smith (1968), Pelto, Elkins,
and Boyd (1968), Legg and Brent (1969), Palmer (1969), Walters (1969), Lodwick and Whittle
(1970), Stone (1975), and Franke and Nielson (1980) suggested fitting a polynomial surface to a
set of nearest neighbors, alsc using distance weighted regression. Stone scaled the values in each
dimension when the experiences where stored. The standard deviations of each dimension of previous
experiences were used as the scaling factors, so that the range of values in each dimension were
approximately equal. This affects the distance metric used to measure closeness of points. Cleveland
(1979) proposed using robust regression procedures to eliminate outlying or erroneous points in
the regression process. A program implementing o refined version of this approach (LOESS) is
available by sending electronic mail containing the single line, send dlo:ss from a, to the address
netlib@research.att.com (Grosse 1989). Cleveland, Devlin and Grosse (1988) analyze the statistical
properties of the LOESS algorithm and Cleveland and Devlin (1988) show examples of its use. Stone
(1977, 1982), Devroye (1981), Lancaster (1979}, Lancaster and Salkauskas (1981), Cheng (1984), Li
(1984), Farwig (1987), and Miiller (1987) provide analyses of nearest neighbor approaches. Franke

(1982) compares the performance of nearest neighbor approaches with other methods for fitting
surfaces to data.

4 Learning in simulation

The network has been used for motor learning of a simulated arm and a simulated running machine.
The network performed surprisingly well in these simple evaluations. The simulated arm was able
to follow a desired trajectory after only a few practice movements. Performance of the simulated
running machine in following a series of desired velocities was also improved. This paper will report
only on the arm trajectory learning,.

Figure 2 shows the simulated 2-joint planar arra. The problem faced in this simulation is to
learn the correct joint torques to drive the arm along the desired trajectory (the inverse dynamics
problem). In addition to the feedforward cuntrol signal produced by the network described in this
paper, a feedback controller was also used.

Figure 3 shows several learning curves for this problem. The first point in each of the curves shows
the performance generated by the feedback controller alone. The error measure is the RMS torque
error during the movement. The highest curve shows the performance of a nearest neighbor method
without a local model, On each time step the nearest point was used to generate the torques for
the feedforward command, which were then sumraed with the output from the feedback controller.
The second curve shows the performance using a linear local model. The third curve shows th~
performance using a quadratic local model. Adding the iocal model network greatly speeds u
learning. The network with the quadratic local model learned more quickly than the one with zhe
local linear model.




Figure 2: Simulated Planar Two-joint Arm
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5 Iunterference

To illustrate the differences between some proposed neural network representations and a memory-
based representation, two neural network methods, CMAC (Albus 1975ab) and sigmoidal feedforward
neural networks, were compared to the approach explored in this paper. The parameters for the
CMAC approach were taken from Miller, Glanz, and Kraft (1987) who used the CMAC to model
arm inverse dynamics. The architecture for the sigmoidal feedforward neural network was taker from
Goldberg and Pearimutter (1988, section 6) whe also modeled arm inverse dynamics.

The ability of each of these methods to predict the torques of the simulated two joint arm at
1000 random points was compared. Figure 4 plots the normalized RMS prediction error. The points
were sampled uniformly using ranges comparable to those used in (Miller et al 1987). Initially,
each method was trained on a training set of 1000 random samples of the two joint arm dynamics
function, and then the predictions of the torques on a separate test set of 1000 random samples of
the two joint arm dynamics function were assessed (points 1, 3, and 5). Each method was then
trained on 10 attempts to make a particular desired movement. Each method successfully learned
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the desired movement. After this second round of training, performance on the random test set was
again measured (points 2, 4, and 6).

The data indicate that the locally weighted regression approach (filled in circles) and the sigmoidal
feedforward network approach (asterisks) both generalize well on this problem (points 3 and 5 have
low error). The CMAC (diamonds) did not generalize well on this problem (point 1 has a large
error), alchough it represented the original training set with a normalized RMS error of 0.000001. A
variety of CMAC resolutions were explored, ranging from a basic CMAC cell size covering the entire
range of data to a cell size covering a fifth of the data range in each dimension. A cell size covering
one half the data ranges in each dimension generalized best (the data shown here).

After training on a different training set (the attempts to make a particular desired niovementi),
the sigmoidal feedforward neural network lost its memory of the full dynamics (point 4), and repre-
seuted only the dynamics of the particular movernents being learned in the second training set. This
interference between new and previously learned data was not prevented by increasing the number
of hidden units in the single layer network {rom 10 up to 100. The other methods explored did not
show this interference effect (points 2 and 6).

6 Tuning Architectural Parameters Globally

For the example problem of two joint arm inverse dynamics, we have introduced 34 free parameters
into .he local regression process: the weighting tunction dropoff parameter p, the 6 elements of the
distance metric m;, and the 27 variable diagonal elements of A (the ridge regression parameters ;).
The element of A corresponding to the constant term, A;, is held fixed.

A cross validation approach is used to choose values for these fit parameters. For each point a
query is done to estimate the output at that point, after removing the point from the database. The
difference between the estimate and the actual value for that point is the crose validation error for
that point. The sum of the squared cross validation errors is minimized using a nonlinear parameter
estimation procedure (MINPACK (More, Garbow, and Hillsirom 1980) or NL2SOL (Dennis, Gay,
and Welsch 1981), for example). Because the lncal model is linear in the unknown parameters we
can analytically take the derivative of the cross validation error with respect to the parameters to be
estimated, which greatly speeds up the search process. In the memory-based approach computing
the cross validation error for a single point is no more computationally expensive than answering
a query. This is quite different from a parametric neural network, where a new network must be
trained for each cross validation training set with a particular point removed.

The cross validation o optimize the fit parameters may be done globally, using all the experiences
in tlie meniory to produce one set of fit varameters. Different fit parameters can be nsed for different
outputs. The cross validation 1aay also be done locally, either with each query, or separately for
different regions of the input space, producing different sets of fit parameters specialized for particular
queries, as discussed in the next section.

We <an use the optimized distance metric to find which input variables are irrelevant to the
function being represented. In the horizontal two-joint arm inverse dynamics problem, m;, the
weight on the distances in the 8, direction typically drops to zero, indicating that the input variable
6, is irrelevant to predicting 7; and 72. This is actually the case, as §; does not appear in the true
dynamics equations for an arm operating in a horizontal plane.

We can also interpret the ridge regression parameters, A;. Since the arm dynamics are linear in
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acceleration, the terms in the local model that are quadratic in acceleration (62, 4, 92, 02) are not
relevant to predicting torques. Similarly the products of velocity and acceleration (8, * 8;, 8; ;.
0y %0y, 2% 8,) are also not relevant to the dynamics. The ridge regression parameter for each of these
terms becomes very large in the parameter optimization. The effect of this is to force the estimated
parameter J; for these terms to be zero and the terms to have no effect on the regression.

We have also explored stepwise regression procedures to determine which terms of the local model
are useful (Draper and Smith 1981) with similar resulits.

7 Tuning Architectural Parameters Locally

In the process of implementing various robot learning algorithms it has become clear to us that
the architectural parameters should depend on the location of the query point. In this section we
describe new procedures that eslimate local values of the fit parameters optimized for the site of the
current query point. We want to demonstrate the differences between local and gicbal fitting in an
example where we only focus on the kernei width k of a Gaussian weighting function. In Figure 5a,
a noisy data set of the function y = z — sin’(272%) cos(27z3) exp(z*) was fitted by locally weighted
regression with a globally optimized constant k. In the left half of the plot, the regression starts to fit
noise because k had to be rather small to fit the high frequency regions on the right half of the plot.
The prediction intervals, whick will be introduced below, demonstrate high uncertainty in several
places. To avoid such undesirable behavior, a iocal optimization criterion is needed. Standard linear
regression analysis provides a series of well-defined statistical tools to assess the quality of fits, such
as coefficients of determination, t-fests, F-test, the PRESS-statistic, Mallow’s Cp-test, confidence
intervals, prediction intervals, and many more (e.g. Myers 1990). These tools can be adapted to
locally weighted regression. We do not want ta discuss all possible available statistics here but rather
focus on two that have proved to be quite helpful.

Cross validation has a relative in linear regression analysis called the PRESS residual error. The
PRESS statistic performs leave-one-out cross validation, however, without the need to recalculate the
regression parameters for every excluded point. This is computationally very efficient. The PRESS
residual can be expressed as a mean squared cross validation error MSE,...,. In Figure 5b, the
same data as in Figure 5a was fitted by adjusting k to minimize MSFE.,, at each query point. The
outcome is much smoother than that of global ciross validation, and also the prediction intervals are
narrower. It should be noted that the extrapolation properties on both sides of the graph are quite
appropriate (compared to the known underlying function), iu comparison to Figure 5a and Figure 5c.

Prediction intervals I; are expected bounds of the prediction error at a query point x; (Myers
1990). Besides using the intervals to assess the confldence in the fit at a certain point, they provide
another optimizaticn measure. Figure 5¢ demcnstrates the result when applying this statistic for
optimization of k at. each query point. Again. the fitted curve is significantly smoother than the
global cross validation fit. A rather interesting and also typical effect happens at the right side of
the plot. When starting to extrapolate, the prediction intervals suddenly favor a global regression
instead of the local regression, i.e., the & was chosen to be rather large. It turns out that in local
optimization one always finds a competition between local and global regression. But sudden jumps
from one mode into the other typically take place only when the prediction intervals are so large that
the data is not reliable anyway.
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8 Assessing The Quality of the Local Model

Both the local cross validaticn error M SE,,,,, and the prediction interval I; may serve to assess the

quality of the local fit:
\ : Z 3‘ E'_‘FDII
c

I =1

Qpis = ==t (10)
The factor ¢ makes Qi dimensionless and normalizes it with respect to some user defined quantity.
In our applications, we usually preferred Qi based on the prediction intervals, which is the more

conservative assessrent.

Qﬂt = (9)

or

9 Dealing with Outliers

Linear regression is not robust with respect to outliers. This also holds for locally weighted regression,
although the influence of outliers will not be noticed unless the outliers lie close enough to a query
point. In Figure 6a we added three outliers to the test data of Figure 5 to demonstrate this effect; the
plots in Figure 6 should be compared to Figure 5c. Moore and Atkeson (1993) applied the median
absolute deviation procedure from robust statistics (Hampbell et al., 1985) to globally remove outliers
in LWR. Again, we would like to localize our criterion for outlier removal. The PRESS statistic can
be modified to serve as an outlier detector in LWR. For this, we need the standardized individual
PRESS residual. This measure has zero mean and unit variance. If, for a given data point it deviates
from zero more than a certain threshold, the point can be called an outler. A conservative threshold
would be 1.96, discarding all points iying outside the 95% area of the nornal distribution. In our
applications, we used 2.57, cutting off all data outside the 99% area of the normal distribution. As
can be seen in Figure 6b, the effects of the outliers are reduced.

10 A Testbed for Learning Algorithms: Robot Juggling

We have constructed a system for experiments in real-time motor learning (Van Zyl 1991). The task
is a juggling task known as “devil sticking”". A center stick is batted hack and forth between two
handsticks (Figure 7A). Figure 7B shows a sketch of our devil sticking robot. The juggling robot uses
its top two joints to perform planar devil sticking. Hand sticks are mounted on the robot with springs
and dampers. This implements a passive catch. The center stick does not bounce when it hits the
hand stick, and therefore requires an active throwing motion by the rebot. To simplify the problem
the center stick is constrained by a boom to move on the surface of a sphere. For small movements
the center stick movements are approximately planar. The boom also provides a way to measure
the current state of the center stick. Ultimately we want to be able to perform unconstrained tiiree
dimensional devil sticking using vision to provide sensing of the center stick state.

The task state is the predicted location of where the center stick would hit the hand stick if the
hand stick was held in a nominal position. Standard ballistics equations for the flight of the center
stick are used to map flight trajectory measurements (z(t), y(t),6(t)) into a task state:

x = (p,6,%,9.0) (11)
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Figure 7: {a) an illustration of devil sticking, {b) a devil sticking robot.
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p is the distance from the middie of the center stick that the hand stick at the nominal position
contacts the center stick, 8 is the angle of the center stick at nominal contact, and #, ¢, and 6, are
the velocities and angular velocity of the center stick at nominal contact.
The task command is given by a displacement of the hand stick from the nominal position (z4, ys),
a center stick angular velocity threshold (6;) to trigger the start of a throwing motion, and a throw
velocity vector (v,, vy). '
u= (27};, yhyehvavvy) (12)

Every time the robot catches and throws the devil stick it generates an experience of the form
(Xx, U, Xx1) Where X is the current state, u, is the action performed by the robot, and x4, is
the state of the center stick after the hit. Thus, a forward or an inverse model would have 10 input
dimensions and 5 output dimensions.

Initially we explored learning an inverse model of the task, using nonlinear “deadbeat” control
to attempt to eliminate all error on each hit. Each hand had its own inverse model of the {orm:

~

Wy = f (X Xns1) (13)

Before each hit the system lnoked up a command with the predicted nominal impact state and the
desired result state:

u, = F (3, x4) (14)

Inverse model learning was successfully used to train the system to perform the devil sticking
task. Juggling runs up to 100 hits were achieved. The system incorporated new data in real time, and
used databases of several hundred hits. Lookups took less than 20 milliseconds, and therefore several
lookups could be performed before the end of the flight of the center stick. Later queries incorporated
more measurements of the flight of the center stick and therefore more accurate predictions of the
state of the task. However. the system required suustantial structure in the initial training to achieve
this performance. The system was started with a default command that was appropriate for open
loop performance of the task. Each contrcl parameter was varied syatematically to explore the
space near the default command. A globai linear model was made of this initial data, and a linear
controller based on this model was vsed to generate an initial training set for the memory-based
system (approximately 100 hits). Learning witn smali amounts of initial data was not possible.

We also experimented with learning based on both inverse and forward models. After a command
is generated by the inverse model, it can be evaluated using a memory-based forward model with
the same data:

Kuir = fxn, W) (15)

Because it produces a local linear model, the locally weighted regression procedure will produce
estimates of the derivatives of the forward model with respect to the commands as part of the
estimated parameter vector 3. These derivatives can be used to find a correction to the command
vector that reduces ervors in the predicted vutcome based on the forward model.

af

Aty =Xy — 16

Fa— k1~ Xd (16)
The pseudo-inverse of the matrix 8f/8u is used to solve the above equation for Afl, to handle
situations in which the matrix is singular or there are a different number of commands and states
(which does not apply for devil sticking). This process of command refinement can be repeated until
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the forward model no longer produces accurate predictions of the outcome. This will happen when
the query to the forward model requires significant extrapolation from the current database. The
distance to the nearest stored data point can be used as a crude measure of the validity of the forward
model estimate.

We investigated this methoed for incremental learning of devil sticking in simulations. The out-
come, however, did not meet expectations: without sufficient initial data around the setpoint, the
algorithm did not work. We see two reasons for this. First, similar to the pure inverse model ap-
proach, the inverse-forward model acts as a one-step deadbeat controller in that it tries to eliminate
all error in one time step. One-step deadbeat control applies unreasonably large commands to correct
for deviations from the setpoint. The workspace bounds and command bounds of our devil sticking
robot limit the size of the commands. In addition, deadbeat control in the presence of errors in
the model seems to lead to large inappropriate commands. Second, the ten dimensional input space
is large, and even if experiences are uniformly randomly distributed in the space there is often not
enough data near a particulur point to make a robust inverse or forward model.

Thus, two ingredients had to be added to the devil sticking controller. First, the controller should
not be deadbeat. It should plan to attain the goal using 1ultiple control actions. Second, the control
must have as the primary goal increasing the data density in the current region of the state-action
space, and as a secondary goal to arrive at the desired goal state. Both requirements are fulfilled by
a simple exploration algorithm we have developed, the shifting setpoint algorithin (SSA) Applied to
devil sticking, the SSA proceeds as follows: §

1. Regardless of the poor juggling quality of the robot (i.e., at most two or three hits per trial), the
SSA makes the robot repeat these initial actions with small random perturbations until a cloud
of data was collected somewhere in state-action space of each hand. An abstract illustration
for this is given in Figure 8.

2. Each point in the data cloud of each hand is used as a candidate for a setpoint of the corre-
sponding hand by trying to predict its output from its input with locally weighted regression.
The point achieving the narrowest local confidence interval becomes the setpoint of the hand
and an linear quadratic (LQ) controller is calculated from its local linear model (Anderson and
Moore, 1990). By means of these controllers, the amount of data around the setpoints can
quickly be increased until the quality of the local models exceeds a chosen statistical threshold.

3. At this point, the setpoints are gradually shifted towards the goal setpoints until the data
support of the local models falls below a statistical value. After shifting, the smoothing kernel
is optimized by minimizing the local cross validation error.

4, The SSA continues by collecting data in the new regions of the workspace until the se{points
can be shifted again (Fig. 8 bottom-left). The procedure terminates by reaching the goal,
leaving a (hyper-) ridge of data in space (Figure 8 bottom-right).

The linear quadratic controilers play a crucial role for devil sticking. It is difficult to build good
local linear models in the high dimensional forward models, particularly at the beginning of learning.
Linear quadratic control is robust even if the underlying linear models are imprecise. We tested the
SSA in a noise corrupted simulation and on the real robot. Learning curves are given in Figure 9a
and Figure 9b.




Pk

Figuse 8: Abstract iilustration how the SSA algorithm collects data in space: top-left: sparse data
after the fixst few hits; top-right: high local data density due to local contzol in this region; bottom-
left: increased data density on the way to the goals due to shifting the setpoints; bottom-right: ridge
of data density after the goal was reached.
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Table 1: Comparison of parametric and memory-based approaches

Training Lookup Tuning

Nonlinear | Nonlinear
Parametric | Parameter Cheap ?
Model Estimation

Memory- Linear Nonlinear
Based Cheap Parameter | Parameter
Model Estimation | Estimation

The learning curves are typical for the given problem. It takes roughly 40 trials before the
setpoint of each hand has moved close enough to the other hand’'s setpoint. For the simulation a
break-through occurs and the robot rarely loses the devilstick after that. The real robot.takes more
trials to achieve longer juggling runs, and its performance is less consistent. The devil sticking:robot
is a very fast robot, but its positioning accuracy achieves at mest 1 cm. Additionally, the direct
drive motors do not always deliver the torque as commanded. The simulation does not model such
disturbances. It only copes with various levels of Gaussian noise, which is rather well-behaved in
comparison to what the real robot experiences. On average, humans need roughly a week of one
hour practice a day before they learn to juggle the devilstick. With respect tc this, the robot learned
rather quickly. Future work will attempt to improve the learning rate and robustness; the results
shown stem from very recent work.

11 Discussion

Memory-based neural networks are useful for motor learning. Fast training is achieved by modular-
izing the network architecture: the memory netwerk does not need to search for weights in order to
store the samples, and local models can be linear in the unknown parameters, leading to a single
optimum which can be found by linear regression or gradient descent. The combination of stering
all the data and ounly using a certain number of uearby sampies to form a local wmodel minimizes
interference betweem. old and new data, and allows the range of generalization to depend on the
density of the samples.

it is useful to compare memory-based function approximation and cther nonlinear parametric
modeling approaches (Table 1). Training a memory-based model is computationally inexpensive, as
the data is simply stored in a memory. Training a nonlinear parametric model typically requires an
iterative search for the appropriate parameters. Examples of iterative search are the various gradient
descent techniques used to train neural network models. Lookup or evaluating a memory-based
model is computationally expensive, as described in this paper. Lookup in a nonlinear parametric
model is often relatively inexpensive. If there is a situation in which a fixed set of training data is
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available, and there will be many queries to the model after the training data is processed, then it
makes sense to use a nonlinear parametric model. However, if there is a continuous stream of new
training data intermixed with queries, as there typically is in many motor learning problems, it may
be less expensive to train and query a memory-based model then it is to train and query a nonlinear
parametric model.

A potential disadvantage of the memory-based approach is the limited capacity of the memory
network. In this version of the proposed neural network architecture, every experience is stored.
Eventually all the memory units will be used up. We have not yet needed to address this issue in
our experiments. However, we plan to explore how memory use can be minimized based on several
approaches. One approach is to only store “surprises”. The system would try to predict the outputs
of a data point before trying to store it. If the prediction is good, it is not necessary to store the
point. Another approach is to forget data points. Points can be forgotten or reinoved from the
database based on age. proximity to queries, or other criteria. It is an empirical question as to how
large a memory capacity is necessary for this network design to be useful. Because memory-based
learning retains the original training data, forgetting can be explicitly controlled.

The cross validation approach to optimizing the fit parameters reduces the number of arbitrary
choices that need to be made before the training data is collected. However, like other modeling
approaches, the choice of representation of the data (number and selection of dimensions to be
measured, etc.) play a large role in determining the success of the approach.

In this learning paradigm the feedback controller serves as the teacher, or source of new data for
the network. If the feedback controller is of poor quality, the nearest neighbor function approximation
method tends to get “stuck” with a non-zero error level. The use of a local model seems to eliminate
this stuck state, and reduce the dependence on the quality of the feedback rontroller.

Much work remains ahead in developing new learning paradigms. We need to develop learning
systems that maintain multiple levels of models, allowing generalization via abstract models of the
task. We need paradigms that are capable of finding new strategies for a task, and learning and
generalizing across multiple tasks. We look forward to paradigins that perform qualitative physical
reasoning and guide learning using this information. Finally, careful control of exploration is needed
for improvements in learning efticiency.
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ABSTRACT

Parti-game is a new algorithm for learning from delayed rewards in high dimensional continuous state-spaces.
In high dimensions it is essential that learning does uot explore or plan over state-space uniformly. Parti-
game maintains a decision-tree partitioning of state-space and applies techniques from game-theory and
computational geometry to efficiently and adaptively concentrate high resolution only on critical areas. The
current version of the algorithin is designed to find feasible solutions to high dimensional problems. Future
versions will be designed to find a solution that optimizes a real-valued criterion. Many simulated problems
have been tested, ranging from two-dimensional to nine-dimensional state-spaces, including mazes, path

planning, non-linear dynamics, auud planar snake robots in restricted spaces. In all cases, a good solution is

found in less than twenty trials and 2 few minutes.




1 Reinforcement Learning

Reinforcement learning [Michie and Chambers, 1968, Sutton, 1984, Watkins, 1989, Barto et al.,
1991] is a promising method for robots to program and improve themselves. This paper addresses
one of reinforcement learning's biggest stumbling blocks: the curse of dimensionality [Bellman,
1957], in which costs increase exponentially with the number of state variables. These costs include
both the computational effort required for planning and the physical amount of data that the
control system must gather.

Much work has been performed with discrete state-spaces: in particular a class of Markov
decision tasks known as grid worlds (Watkins, 1989, Sutton, 1990a). Most potentially useful appli-
cations of reinforcement learning, however, take place in multidimensional continuous state-spaces.
The obvious way to transform such state-spaces into discrete problems involves quantizing them:
partitioning the state-space into a multidimensional grid, and treating each box withiu the grid as
an atomic object. Although this can be effective (see, for instance, the pole balancing experiments:
of [Michie and Chambers, 1968, Barto et al., 1983] which break state-space up in this way), the
naive grid approach has a number of dangers which will be detailed in this paper.

This paper studies in detail the pitfalls of discretization during reinforcement learning and
then introduces the parti-game algorithm. Some earlier work [Simons et al., 1982, Moare, 1991,
Chapman and Kaelbling, 1991, Dayan and Hinton, 1993] considered recursively partitioning state-
space while learning from delayed rewards. The new ideas in the parti-game algorithm include (i) 2
game-theoretic splitting criterion to robustly choose spatial resolution, (ii) real-time incremental
maintenance and planning with a database of previous experiences, and (iii) using local greedy

controllers for high-level “funneling” actions.

2 Assumptions

The parti-game algorithm applies to learning control problems in which:

1. State and action spaces are continuous and multidimensional.

2. “Greedy” and hill-climbing techniques can become stuck, never attain-
ing the goal.

3. Random exploration can be intractably time-consuming.

4. The system dynamics and control laws can have discontinuities and

are unknown: they must be Jearned. However, we do assume that all

paths that the system can travel through state space are continuous.




The experiments reported later all have properties 1-4. However, the initial algorithm, described

and tested here, has the following restrictions:

5. Dynamics are deterministic.

6. The task is specified by a goal state, not an arbitrary reward function.

7. The goal state is known.

8. A feasible solution is found, not necessarily a path which optimizes a
particular criterion.

9. A local greedy controller is available, which we can ask to move greedily
towards any desired state. There is no guarantee that a request to the
greedy controller will succeed. For example, in a maze a greedy path

to the goal would quickly hit a wall.

This paper begins by giving a series of algorithms of increasing sophistication, culminating in parti-
game. We then give results for a nuraber of experimental domains and conclude with discussion of,

how counstraints 5-9 may be relaxed.

3 The Parti-game Algorithm

The parti-game learns a controller from a start region to a goal region in a continuous state-
space. We now give four increasingly effective algorithms which attempt to performn this by discrete
partitionings of state-space. Algorithms (1) and (2) are non-learning: they plan a route to the goal
given a-priori knowledge of the world. Algorithms (3) and (4) must learn, and hence explore, the
world while planning a route to the goal. Algorithm (1) is a planner which assumes that state
transitions begin at the center of partitions, and generalizes this to the assumption of starting
randomly within a partition. Algorithm (2) avoids some of (1)’s mistakes by means of worst-case
planning. Algorithm (2) is a learning version of (2). Algorithm (4) is the parti-game algorithm.
It develops a variable resolution partitioning in conjunction with the planning and learning of
Algorithm (3).

3.1 Algorithm (1): Non-learning and fixed partitions

A partitioning of a continuous state-space is a finite set of N disjoint regions labeled 1,2,...N such
that the whole of state space is covered by the union of all partitions. Throughout this paper
we will assume the partitions are all axis-aligned hyperrectangles, though this assumption is not

strictly necessary. 1t is important to clarify a potential confusion between real-valued states and

partitions. A real-valued siate, s, is a real-valued vector in a multidimensional space. For example,
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states from the maze depicted in Figure 1 are two-dimensional (z,y) coordinates. A partition is a
discrete entity, and Figure 1 is broken into six partitions with identifiers 1...6. Each real-valued
state is in one partition and each partition contains a continuous set of real-valued states. Define

NEIGHS(¢) as the set of partitions which are adjacent to i. In Figure 1, NEIGHS(1) = {2,4}.

Figure 1: A two-dimensional continuous maze

1 2 3 with one barrier: the black polygonal region

near the bottom right. State-space has been

discretized into six square partitions.

Algorithm (1) takes as input an environmental model and a partitioning P. The environmental
model can be any model (for example, dynamic or geometric) which we can use to tell us for any
real-valued state, control command and time interval, what the subsequent real-valued state will be.
The algorithin outputs a policy: a mapping from partition identifiers to the neighboring partitions
which should be aimed for. The algorithm depends upon the NEXT-PARTITION function, which
we define first. NEXT-PARTITION tells us which partition we end up in if we siart at a given
real-valued state and keep moving toward the center of a given partition (using a local greedy
controller) until we either exit our initial partition or get stuck. Let i be the partition containing
real valued state s. Continue applying the local greedy controller “aim at partition j” either until

partition 1 is exited or until we become permanently stuck in 7. Then

i { i if we became stuck
NEXT-PARTITION(s,j) = { (1)

the partition containing the exit state otherwise

The test for sticking can simply be implemented 2s a test to see if the system has not exited the
partition after a predefined time interval. Depending upon the application other sticking detectors
are possible, such as an obstacle sensor on a mobile robot.

Algorithm (1) works by constructing a discrete, deterministic Markov decision task (MDT) [Bell-
man, 1957, Bertsekas and Tsitsiklis, 1989] in which the discrete MDT states correspond to parti-
tions. Actions correspond to neighbors thus: action  in partition i corresponds to starting at the

center of partition i and greedily aiming at the center of partition k.




ALGORITHM (1).

1 Given N partitions, construct a deterministic MDT with N discrete states 1.+ N. The set
of actions of partition i is precisely NEIGHS(7). Define NEXT({, k) as

NEXT (i, k) = NEXT-PARTITION(CENTER (i), k) (2)
where CENTER(3) is the real-valied state at the center of partition .

2 The shortest path to the goal from each partition i, denoted by Jsp(i), is determined by

solving the set of equations:

0 if i = GOAL

Jsp(i) = (3)

min - )
1+ 4 e NE1GHS() /5P(NEXT(i,k))  Otherwise

The equations are solved by a shortest-path method such as dynamic programming [Bellman,.;
1957, Bertsekas and Tsitsiklis, 1989] or Dijkstra’s algorithm [Knuth, 1973].

3 The following policy is returned: Always aim for the neighbor with the lowest Jsp() value.

This simple algorithm has immediate drawbacks. It will minimize the nuinber of partitions to the
goal, not the real distance. And the discretization can easily find impossible solutions or fail to
find valid solutions. As an example of the former, in Figure 1, Algorithm (1) would find solution
path 5 — 6 — 3. This is because it is possible to travel from the center of 5 and enter 6 (in the
part of 6 to the left of the obstacle), and it is possible to travel from the center of 6 and enter 3.

An extension to Algorithm (1) might initially appear to solve the problem. We could remove the
assumption that all paths between partitions begin at the center of the source partition. Suppose
we produce a stochastic Markov decision task. Let p{-‘j be an approximation of the probability of
transition to partition j given we have started in i and aimed at the center of k. pf‘j is defined
by the probability we end up in partition k from a uniformly randomly chosen legal start point
in partition i. The dynamic programming step of the previous algorithm is altered so that it now
solves the stochastic MDT:

0 if t = GOAL

Isp(i) =4 min

N
— Lk : . (4)
[ 1+ + € NEIGHS(i) jz—‘lpijJSP(]) Otherwise

Although intuitively appealing, this refinement does not help. In the example of Figure 1 the

resultant policy from state 5 will still beto aim for 6. As we see from Figure 2, p$; = 0.65, and from

5




Figure 3, pd; = 0.91. The policy 5 — 6 — 3 is interpreted as the transition graph in Figure 4 which
has expected length 1/0.65 + 1/0.91 = 2.64, and so is preferred over the longer but gu. ranteed
policy of 544 —=1 -2 —3.

GOAL Figure 2: Approximately 65% of the starting

1 2 3 states (those in the shaded region) in partition

5 are such that they will enter partition 6 if we

aim for the center of 6. Thus pg; = 0.65.

GOAL

1 2 3 Figure 3: In a similar fashion to Figure 2, p2, =
0.91.

START

Figure 4: The partition transition probabilities
if we follow the 5 — 6 — J policy according to

the assumptions in the text.

Other variants of this stochastic approximation apgroach are possible, but they all suffer from

the same problem. They are using a Markov decision formalism for something which does not have

6




the Markev property. This is because from a given partition, i, the neighbors which can successfully

be reached depend on more than “i”, they also depend on the current location within i,

2.2 Algorithm (2): Assuming the worst case

Instead of approximating the steps-to-goal value of a partition by the average steps-to-goal of all
real-valued states in the partition, we approximate it by the worst value. As before, each partition
has an associated set of actions, each labeled by a neighboring partition. Also, each action now
has a set of possible outcomes. The outcomes of an action j in a partition { are defined as the set
of possible next partitions.

(5)

. there exists a real valued state s ia partition s for which
QU TCOMES(3,j) = ¢ k l

NEXT-PARTITION(s,j) =k

In Figure 5, the actions are denoted by black solid arrows and the outcomes by the thin. lines.
For example, partition 5 has three actions: “aim at 4", “aim at 2" and “aim at 6", The “aim at
6" action has, in turn, two possible outcomes. We might make it if we are lucky, or else we will
remain in 5. The OUTCOMES() sets are decisions which an imaginary adversary will be allowed

to make, seen in Algorithm (2).

Figure 5: The symbolic representation of the
original problem as partitious (circles), actions

(solid arrows) and outcomes (thin arrows).
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e 1 Define Jiy¢(7) as the minimum number of partitiuns to the goal ander the worse-case asummp-
i

tion that whenever we have specified our current partition 7 and our intended next partition

2,7

J. an adversary is permitted to place us in the worst position within partition 7 prior to the

local controller being activated.




Solve the following set of minimax equations:

0 if i = GOAL

min max . .
L+ k¢ NEIGHS(i) je¢ OUTCOMES(i,k) Jwe(j) Otherwise

(6)

Jwel(i) =

where Jwc (i) is allowed to take the value +o00 to denote a partition from which our adversary

can permanently prevent us reaching the goal. Call such a partition a losing partition.

2 The following policy is returned: Always aim for the neighbor with the lowest Jiyyc() value.

The Jwe(.) function can be computed by a standard minimax algorithm [Knuth, 1973], which is
in turn closely related to deterministic dynamic programming algorithms.

This algorithm is pessimistic, but if it tells us that the current partition is n partition transitions
to the goal then we can be sure that if we follow its policy we will indeed take n or fewer partition-
transitions, The trivial inductive proof is omitted. ,‘”

In Figure 1, Algorithm (2) will decide that partition 5 is four steps from the goal and will.
recommend heading towards 4. It avoids partition 6 because the minimax assumption scores
partition 6 as being oo steps from the goal. This is because if, in partition 6, we decide to use
action “aim for 3” the adversary will start us in the bottom left of partition 6. And if we use action
“Aim for 5", the adversary will start us in the bottom right of partition 6.

It should be observed just how pessimistic the algorithm is. In the almost entirely empty maze
of Figure 6 the start partition will be considered a losing partition. So although the minimax
assumption guarantees success if it finds a solution, it may often prevent us from solving easy
problemg. We will see that Algorithm (3) reduces the severity of this problem because instead of
considering the worst of all possible outcomes, the planner only considers the worst of all empirically
observed outcomes. Thus a block in a piece of a partition which never was actually visited would

not be identified as an outcome available to the adversary. Algorithm (4) fully solves the remaining

aspects of the problem by increasing the resolution of losing partitions.

3.3 Algorithm (3): A learning version of Algorithm (2)

An important aim of this work is to have a controller which does not begin with an environmental
model, but which manages instead to learn purely from experience. Algorithm (2) can be extended
to permit this. The set of OUTCOMES(:, ) for each partition i and neighbor j can be obtained
empirically. Whenever an OUTCOMES(3, j) is altered, the game is solved with the new outcomes

set. We still assume that the location of the partition containing the goal is known.



g GOAL Figure 6: Partition 3 is scored as losing because

e ; 2 if it aims for 1 the adversary can place it below
' the upper triangular block and if it aims for 4
e k the adversary can place it to the left of the lower
. START triangular block.

*_ A ‘

A further detail must be resolved. In the early stages, what should be done for those actions
which have not yet been experienced? The answer is to assume by default that any neighbor aimed

for can be attained. Algorithm (3), based on these ideas, takes three inputs:
¢ The current real-valued system state s.
e A partitioning of state-space, P.

s A database, D, of all previously observed partition-transitions in the lifetime of the system.

This is a set of triplets:

(starting in 4q, I aimed for jo and actually arrived in ko)

(starting in 7, I aimed for j; and actually arrived in k)

T R

The algorithm returns two outputs: The final system state after execution and a binary signal
indicating SUCCESS or FAILURE. The database is also updated according to experience.

ALGORITHM (3).
REPEAT FOREVER

1 Compute the OUTCOMES(3, j) set for each partition ¢ and each neighbor j € NEIGHS(:)
thus:

T
t

e If, for any &, (i,7,k) € D then:

OUTCOMES(i, j) = {kl (i,7,k) € D} (7) .
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¢ Else, use the optimistic assumption in the absence of experience:
OUTCOMES(4,5) = {j} (8)
2 Compute Jw¢() for each partition using minimax.
3 Let i := the partition containing s.
4 If i = GOAL then exit, signaling SUCCESS.
5 If Jwc(i) = oo then exit, signaling FAILURE.

6 Else
- argmin y
6.1 Letj:= . NEIGHSG) J7CU)
6.2 WHILE ( not stuck and s is still in partition i )

6.2.1 Actuate local controller aiming at j.

6.2.2 s := new real-valued state.
6.3 Let inew := the identifier of the partiticn containing s.

6.4 D := DU{(i;j’ineW)}
Loor

An addition to the algorithm can reduce the computational load. If real tirne constraints do net
permit full recomputation of Jw¢ after an outcome set has changed, then the Jw ¢ updates can take
place incI:rementa.lly in a series of finite time intervals interleaved with real-time control decisions.
Techniques like this are described in [Sutton, 1990b, Peng and Williams, 1993, Moore and Atkeson,
1993).

The following theorem bas not been proved but we expect few difficulties: If a solution exists
from all real-valued states in all partitions, according to Algorithm (2), then Algorithm (3)will,
in fewer than N3 partition transitions, also find a solution from its initial state, where N is the
number of partitions.

A final note about Algorithm (3) is necessary. More general systems than maz.s will produce
more interesting games. Later we will see examples of non-uniform partitionings aud of dynamics
that produce curved trajectories through space. Both cases can produce more detailed game
structures than stuck/non-stuck transitions, and Algorithm (3) is applicable in these cases too.

Such a structure is shown in Figure 7.
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Figure 7: Partitions 1 and 3 are losers because
the adversary can force a permanent loop be-

tween them.

3.4 Algorithm (4): Varying the Resolution

We do not wish the system to give up when it discovers it is in a partition for which Jwe = .
The correct interpretation of a losing partition is that the planner needs higher resolution, ands
parti-game gives it that by dividing some coarse partitions in two. )
Interestingly, it is not necessarily worth increasing the resolution of the partition the system is
in, nor is it necessarily worth splitting all partitions which have Jy ¢ == oo. Figure 8 shows a case
in which the current state is in a partition which it will not help tc split. This is because there is
no path to a non-losing state from the current partition anyway (other losing partitions block us)

and no matter how high we make its resolution our current partition will remain a loser.

LOSE LOSE 1 STEP GOAL
1
Current LOSE 2 STEPS 1 8TEP
State | . T .
Figure 8: A 12-cel] partitioning in which
it will not help to split the partition con-
LOSE LOSE LOSE tzining the current state.
LOSE LOSE
It is the partitions on the border between losing regions and non-losing regions which should be -
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split. Under the assumption that all paths through state space are continuous, and also assuming
that a path to the goal actually exists, there must currently be a hole in one of the border partitions
which has been missed by the over-coarseness. This motivates the final algorithm which we present.

The algorithm takes three inputs:

o The current real-valued system state, s.
¢ A partitioning of state-space, P.

e A database, D, of all empirically experienced (start,aimed-for,actual-outcome) triplets.

It returns two outputs: a new partitioning of state-space and a new database.

ALGORITHM (4): (PARTIGAME).
WHILE ( s not in the goal partition )

1 Compute Jw¢() for each partition using minimax.

2 Run Algorithm (3) on s and P, retrieving the resulting additions to the database D, plus the

new real-valued state s, and a success/failure signal.
3 If FAILURE was signaled

3.1 Let @ := All partitions in P for which Jw¢ = 0.

3.2 Let Q' := Members of Q who have any non-losing neighbors.

3.3 Let Q" := Q' and all non-losing neighbors of members of @Q’.

3.4 Construct a new set of partitions from Q", of twice the size, produced by splitting

MR B
ML A e . .

- .

each partition in half along its longest axis. Call this new set R.
3.5 P:= P+ R-Q"

3.6 Recompute all new neighbor relations and delete those members of database D which

contain a member of Q" as a start point, an aim-for or an actual-outcome.

LOOP

3.5 Partigame Details

Initialization

Before the very first trial, parti-game is initialized as just two partitions: a goal partition covering



the goal region, and one other large partition covering the rest of state-space. At that point,
Algorithm (4) is called. Unless the system is very lucky, this trivial partitioning will not be
adequate to reach the goal using the greedy controller. At the point when this is detected the
initial, trivial partitioning will quickly start splitting.

Increasing the resolution

Notice that this algorithm increases the resolution at both sides of the win/lose border. This
prevents enormous partitions from bordering tiny partitions. There could be other algorithms in
which the partitions to split are chosen differently. The question of which alternative is best remains

open for further investigation.

Planning and learning in parti-game
Partigame performs planning and learning simultaneously. Interestingly, these two components:
are of great help to each other. The learning consists of gathering data to build up the sets of
known possible outcomes of transitions between partitions. This data is gathered by planning
paths to “interesting” partitions and executing “interesting” actions. A partition seems interesting
if, according to the optimistic assumption that anything we haven't tried will work (Equation 8 in
Algorithm (3)), the partition lies on the shortest path to the goal.

The planning is helped by the learning because the computation and representation are con-
centrated on the parts of the state space which, according to the database of experiences, are most

critical.

The goal partition
The goal partition is special. It never changes or gets split. The task is defined to be solved when
the system enters any part of the goal partition. In the experimental diagrams in Section 4 it is
the box marked “Goal”.

When other partitions are split, each new partition has to recompute all the neighbors that it
is next to. Any new partition which intersects the goal partition also includes the goal partition as

one of its neighbors.

4 Experiments

All these experiments are broken into trials. On each trial the system is placed in an initial state

and the trial proceeds until the system enters the goal region.

13
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Figure 9: A two-dimensional maze problem. The point Figure 10: The path taken during the entite firsi trial.

robot must find a path from start to goal without crossing It begins with intense exploration to find a route out of
any of the barrier lines. Remember that initially it does the almost entirely enclosed start region. Having eventu-
not know where any obstacles are, and must discover them  ally reached a sufficiently high resolution, it discovers the
by finding impassable states. gap and proceeds greedily towards the goal, only to be
stopped by the goal’s bairier region. The next barrier is
traversed at a much lower resolution, mainly because the

gap is larger.

4.1 Maze navigation

Figure 9 shows a two-dimensional continuous maze. Figure 10 shows the performance of the robot
during the very first trial. Figure 11 shows the second trial, started from a slightly different
position. The policy derived from the first trial gets us to the goal without further exploration.
The trajectory has unnecessary bends. This is because the controller is discretized according to
the current partitioning. If necessary, a local optimizer could be used to refine this trajectory!.
The system does not explore unnecessary areas. The barrier in the top left remains at low
resolution because the system has had no need to visit there. Figures 12 and 13 show what

happens when we now start the system inside this barrier.

! Another method is to increase the resolution along the trajectory [Moore, 1991],
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Vigure 12: Starting inside the to
Figure 11: The second trial. 8 ¢ P Figure 13: The trial after that.
left barrier.

4.2 Non-linear dynamics

Figure 14 depicts a frictionless puck on a bumpy surface. It can thrust left or right with a maximum
thrust of £4 Newtons. Because of gravity, there is a region near the center of the hill at which the
maxituum rightward thrust is not strong enough to accelerate up the slope. Thus if the goal is at
the top of the slope, a strategy which proceeded by greedily choosing actions to thrust towards the

goal would get stuck.

Npis T Vi
«

Goal

LTI W Ty IO T
PO B

Figure 14: A frictionless puck
N acted on by gravity and a hor-
izontal thruster. The puck must
get to the goal as quickly an pos-

sible. There are bounds on the

m=1 maximum thrust.
mg 4<F<4

Position (x)

This is made clearer in Figure 15, a phase space diagram. The puck’s state has two components, y




the position and velocity. The hairs show the next state of the puck if it were to thrust rightwards
with the maximum legal force of 4 Newtons. Notice that at the center of state space, even when
this thrust is applied, the puck velocity decreases and it eventually .slides leftwards. The optimal
solution for the puck task, depicted in Figure 16, is to initially thrust away from the goal, gaining

negative velocitv, until it is on the far left of the diagram. Then it thrusts hard right, to build up

sufficient energy to reach the top of the hill.
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The lacal greedy controller which parti-game uses is bang-bang. To aim for a partition “north”

(1]
Position

Figure 15: The state transition
function for a puck which con-
stantly thrusts right with maxi-

mum thrust.

Figure 16: The “minitnum-

time” path from start to goal
for the puck on the hill. The
optimal value function is shown
by the background dots. The
shorter the time to goal, the
larger the black dot. Notice the
discontinuity at the escape ve-

locity.




in state space—a partition with greater velocity—it thrusts with the maximum permissable force
of +4N. To aim for a lower velocity partition it thrusts with -4N. To aiin for an “east” or “west”
partition, the local controller merely controls its velocity (using a trivial linear controller) to be
equal to the velocity of the center of the destination partition. Notice that if the current partition’s
velocity is greater than zero it is hopeless to greedily aim for the partition on the left. It is also
hopeless to aim at the partition on the right if the current partition has negative velocity. In the
experiments below Parti-game is given this extra information. TIorcing parti-game to learn this
from experience approximately doubles the learning time.

Figure 17 shows the trajectory through state space during the very first learning trial, while it
is exploring and developing its initial partitioning. l'igure 18 shows the resulting partitioning and
the subsequent trajectory?: on its second trial it has already lcarned the basic strategy of “begin
by getting a negative velocity, moving backwards, and onily then heading forward with full thrust”.
Figure 19 shows the interesting result of running many more trajectories, each starting at random.
parts of state space. Many partitions are created and refined, but only around the critical border”
in state space which serves as the escape velocity of the problem (also visible as the discontinuity
in Figure 16). This high resolution line arises not out of any pre-programmed knowledge of the
escape velocity but because the system does not need to increase the resolution of partitions which

fail to intersect the escape velocity region.

4.3 Higher dimensional state spaces

Figure 20 shows a three-dimensional state-space problem. If a standard grid were used, this would
need an enormous number of states because the solution requires detailed maneuvers. Parti-game’s
total exﬁloration took 18 times as much movement as one run of the final path obtained.

Figure 21 shows a four-dimensional problem in which a ball slides on a tray with steep edges.
The goal is on the other side of a ridge. The maximum permissible force is low. Greedy strategies,
or globally linear control rules, get stuck in limit cycles within a valley. The local greedy controller
to navigate between adjacent partitions is bang-bang controller. Parti-game’s solution runs to the
far end of the tray, to build up enough velocity to make it over the ridge. The expl -tior-length
versus final-path-length ratio is 24.

Figure 22 shows a 9-joint snake-like robot manipulator which must move to a specified configu-

ration on the other side of a barrier. Again, no kinematics model or knowledge of obstacle locations

Careful inspection of this diagram reveals that the trajectory changes direction not at the borders of cells but
instead within cells. This is because the current implementation waits until it is well within a cell before applying

the cell’s recommended action.
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Figure 17: The trajectory of the Figure 19: The partitioning after it

Figure 18: The trajectory and par-

very first trial, while the system per- has learned the task from 200 ran-

titioning of the second trial.
formed its initial exploration of state dom start positions.

space.

are given: the system must learn these as it explores. It takes seven trials before converging on
the solution shown, which requires about two minutes run-time on a SPARC-I workstation. The
exploration-length versus final-path-length ratio is 60. Interestingly, the final number of partitions
is only 85. This compares very favorably with the 512 partitions which would be needed if the
coarsest non-trivial uniform grid were used: 2 x 2 x -+ x 2. Unsurprisingly, for the 9-joint snake,
this 512 uniform grid is too coarse, and in experiments we performed with such a grid the system

hecame stuck, eventually deciding the problem was impossible.

5 Related work

A few other researchers in Reinforcement Learning have attempted to overcome dimensionality
problems by decompositions of state space. An early attempt was [Simons et al., 1982] who
attempted it for 3-degree-of-freedom force control. Their method gradually learned by recording
cumnulative statistics of performance in partitions. More recently, we produced a variable resoluticn
dynamic programming method {Moore, 1991]. This enabled conventional dynamic programming to
be performed in real valued multivariate state spaces where straightforward discretization would
fall prey to the curse of dimensionality. This is another approach to partitioning state space but
has the drawback that, unlike parti-game, it requires a guess at an initially valid trajectory through
state space. [Chapman and Kaelbling, 1991] proposed an interesting algorithm which used more

sophisticated statistics to decide which attributes to split. Their objectives were very hard because
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Figure 20; A problem with a planar rod being guided past obstacles. The state-space is three-
dimensional: two values specify the position of the rod’s center, and the third specifies the rod’s
angle from the horizontal. The asgle is constrained so that the pole’s dotted end must always be
below the other end. The pole's center may be moved a short distance (up to 1/40 of the diagram
width) and its angle may be altered by up to 5 degrees, provided it does not hit & barrier in the
process. Parti-game converged to the path shown below after two trials, with 18 times as many
exploration steps as there are steps in the final path. The partitioning lines on the second diagram

only show a two-dimensional slice of the full partitioning.

Trials 1 |2 Ja Ja [s [6 J7 T8 |so J1o
Steps 2976 189 | 107 | ne further
Partitions | 149 | 149 | 149 | change
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Figure 22: A nine-degree-of-freedora planar robot must move from the shown start configuration
to the goal. The joints are shown by small circles on the left-hand diagram which depicts two
configurations of the arm: the start position aad the goal position. The solution entails curling,
rotating and then uncurling. It may not intersect with any of the barriers, the edge of the workspace,

ot itself. Convergence occurred after seven trials, with 60 times as much exploration as there are

g

steps in the final path,

\\%\\ (_Fixed
// base

Trials 1 |2 [3 |4 |s e |7 8 |s |10
Steps 1090| 430 | 353 [ 330 | 739 [ 200 | 62 | no further
Partitions | 41 66 67 69 78 85 85 change
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they wished to avoid remembering transitions between cells and they did not assume continuous
paths through state space, and so they obtained only limited empirical success.

In [Dayan and Hinton, 1993) a 2-dimensional hierarchical partitioning was used on a grid with
64 discrete squares, and [Kaelbling, 1993] gives another hierarchical algorithm. These references
both attempt a different goal than parti-game: they try to accelerate Q-learning [Watkins, 1989]
by providing it with a pre-programmed abstraction of the world. The abstraction, it is noted in
both cases, may sometimes indeed lead to faster learning and can improve Q-learning if there are
multiple goals in the problem. In contrast, parti-game is able to build its own abstraction using
geometric reasoning and so learns more quickly (typically in fewer than ten trials and a few minutes
of real time) and on significantly higher dimensional problems than have been attempted elsewhere.
The price parti-game pays is that it is Imited to geometric abstractions, whereas both Kaelbling’s
and Dayan’s methods may eventually be applicable to other abstraction hierarchies.

Geometric Decompositions have also been used fairly extensively in Robot Motion Planninge
(e.g. [Brooks and Lozano-Perez, 1983, Kambhampati and Davis, 1986]), summarized in [Latombe,;
1991). The principal difference is that the Robot Motion Planning methods all assume that a model
of the environment (typically in the form of a pre-programmed list of polygons) is supplied to the
system in advance so that there is no learning or exploration capability. The experiments in [Broaks
and Lozano-Perez, 1983] involve a 3-degree-of-freedom navigation problem and in [Kambhampati
and Davis, 1986], a fairly difficult 2-dimensional maze.

Finally, some relation can be seen between parti-game and multigrid methods (e.g. [Hoppe,
1986)]) used in numerical analysis to accelerate the convergence of solutions to partial differential
equations. Multigrid methods typically increase the resolution of the grid everywhere, and like
robot motion planning, do net learn: the cofrect system dynamics must be programmed in.

ALt e L IIN
6 Discussion

6.1 Splitting

Given a partition we have decided to split, which axis should be split? Algorithn. (4) states that
we should split along the longest axis. This begs the question of where to split in the case of ties.
The current algorithm resolves ties with a fixed ordering on axes, but we could be cleverer. In
Figure 23 it is clear that a vertical split would be more useful than a horizontal split. This kind of

intelligent split choice, which pays attention to the locations of outcomes, would not be difficult to

incorporate.
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Figure 23: We have had two experiences

of attempting to move North from two dif-

ferent points in the partition. Only one

succeeded.

Trajectory  Trajectory
North North
Failed Succeeded

6.2 Not forgetting

Wher a partition is split, the outcomes of its children are initialized to be empty and so old data
is forgotten. This is not desirable or necessary. Old trajectories could be retained and used to

inicialize the OUTCOMES() sets of those children within which earlier trajectory segments lay.

6.3 Learning the local greedy controllers

The parti-game algorithm requires that the user defines local greedy controllers. Is his not a large
sacrifice of autornomy? We argue not: learning greedy controllers merely requires gathering enough
local experience to form a local linear map of the low level system dynamics. This can be done

with -~lative ease, both ir. a statistical und computa.ional sense.

8.4 Dealing with an unknown goal state

There 1s no C'fliculty for parti-game in removing the assumption that the location of the goal state
is xnown. Convergence will ve considerably slowed down if it is not given, but this is not the fault

of the algorithrr. If there are D state variables and the geal is signaled when all state variables

are simultaneously within £6% of an unknown goal value, then it is clear that an exploraticn of at

100\ P
('ﬁ) (9)

least




points on a grid in state-space are needed to ensure the goal is reached even once, whatever the
learning algorithm.
A simple supplement to parti-game can be made to implement this kind of uniform exploration.

It begins with a uniform grid partition with

100
K3 (10)

breaks on each axis and encourages exploration by estimating the Jwc value of all unvisited
partitions as zero. At this resolution at least one initial partition must be a proper subset of the
goal region and so once the system has entered any part of each initial partition the goal must have

been discovered.

6.5 Attaining Optimality

Parti-game is designed to find solutions to delayed reward control problems in reasonable time-
without needing help in the form of initial human-supplied trajectories. The algorithm works hard
to find a solution but makes o attempt to optimize it. Empirically, all solutions found have been
good. There are a number of kinds of suboptimality which parti-game will not produce. In the case

of navigation, for example, parti-game cannot produce loops or meanders, as shown in Figure 24.

Figure 24: Partigame cannot pro-

/- duce either of these kinds of sub-
q/ optimality. No loops, and no un-

blocked adjacent partitions which

L contair separate parts of a solution
trajectory.
7 X } Yy

The lack of guaraateed optimality in parti-game is a concession to the fact that there is unlikely
to be sufficient time in the lifetime of a reinforcement learning system to explore every possible

solution. Future research may reveal ways to achieve weaker optimality guarantees:

« That the solution is locally optimal.

¢ A proof that even if the solution is not globally optimal, the global solution can be no better

thar jactor A" (in terms of cost uaits for the task being learned) over parti-game’s solution.

Both vhese optimality stai -1ents will require extra assumptions about the state space. In the case

of navigational problems, this can come in the form of geometric reasoning. In dynamics problems
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it will be by means of local linearizations within partitions, and subsequent Linear Quadratic
Gaussian (LQG) local control design (see, for example, [Sage and White, 1977]).

It is also possible that other domains will be able to use similar reasoning by means of admis-
sible heuristics: a classical metkod in Al for formally reasoning about the optimality of proposed

solutions [Nilsson, 1971].

6.6 Multiple Goals

Because it builds an explicit model of all the possible state transitions between partitions, it is a
trivial matter for parti-game to change to a new goal. We have pertormed a number of experiments

(not reported here) that confirm this.

6.7 Stochastic Dynamics

This is the hardest issue for parti-game to cope with. If a given action in a given partition producess
raultiple results, how do we decide if this is due to inherent randomness or due to overly coarsé
partitions? In the latter case it will be helpful to increase the resolution and in the former case it
will not.

The easiest case will be noise in the form of
next-state = f(state, action) + noise-signal() (11)

An example is an environment which randomly jogs a mobile robot between each movement. We
have performed some experiments with parti-game under this scenario (not reported here), and
have not yet seen it get stuck even when quite substantial noise was added. In principal, though,
any amolnt of noise could break the partigame algorithm—if trials were run indefinitely, eventually
all of state space woula become partitioned to unboundedly high resolution. An improvement to
parti-game wight use siatisvical tests which try to explain outcomes in terms of location within the
partition, This might nelp, but further research is needed.

If the randomness is something which occasionally teleports the system to a random place
(breaking the assumption of paths being continuous through state space), then partigame would
probably need an entirely different splitting criterion. One possibility is a version of the “G"

splitting rule of [Chapman and Kaelbling, 1991].

6.8 The Curse of Dimensionality

We finish by noting a promising sign involving a series of snake robot experiments with different

uumbers of links (but fixed total length): Intuitively, the problem should get easier with more links,
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but the curse of dimensionality would mean that (in the absence of prior knowledge) it becomes
exponentially harder. This is borne out by the observation that random exploration with the
three-link arm will stumble on the goal eventually, whereas the nine link robot cannot be expected
to do so in tractable time. However, Figure 25 indicates that as the dimensionality rises, the
amount of exploration (and hence computation) used by parti-game does not rise exponentially.
It is conceivable (but not supported by further evidence in this paper) that real-world tasks may
often have the same property: the complexity of the ultimate task remains roughly constant as
the number of degrees of freedom increases. If so, this might be the Achilles’ heel of the curse of

dimensionality.

Figure 25: The number of partitions fi-
nally created against degrees of freedom :
for a set of snake-like robots. The parti-
80 tionings built were all highly non-uniform,
60 typically having maximum depth nodes of

40 ) twice the dimensionality. The relation be-

0 4 J tween exploration time and dimensional-

e ! ity (not shown) had a similar shape.

Partitions made bhefore converge
g

Dimensionality

7 Conclusion

This paper began with the problems of coarse partitionings of state space. It then showed how
worst-case assumptions can solve these problems, and very effectively identify partitions which need
to have their resolutions increased. There are many interesting avenues arising from these ideas

which remain open for further investigation.
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Prioritized Sweeping: Reinforcement Learning with

Less Data and Less Real Time

Andrew W, Moore
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Abstract

We present a new algorithm, Prioritized Sweeping, for efficient prediction and control of stochas-
tic Markov systems. Incremental learning methods such as Temporal Differencing and Q-
learning have fast real time performance. Classical methods are slower, but more accurate,
because they make full use of the observations. Prioritized Sweeping aims for the best of both
worlds. It uses all previous experiences both to prioritize important dynamic programming
sweeps and to guide the exploration of state-space. We compare Prioritized Sweeping with
other reinforcement learning schemes for a number of different stochastic optimal control prob-

lems. It successfuily solves large state-space real time probiems with which other methods have

difficulty.




1 Introduction

This paper introduces a memory-based technique, prioritized sweeping, which can be used both for
Markov prediction and reinforcement learning. Current, model-free, learning algorithms perform
well relative to real time. Classical methods such as matrix inversion and dynamic programming
perform well relative to the number of observations. Prioritized sweeping seeks to achieve the best
of both worlds. Its closest relation from conventional Al is the search scheduling technique of the
A* algorithm (Nilsson 1971). It is a “memory-based” method (Stanfill and Waltz 1986) iu that it
derives much of its power from explicitly remembering all real-world experiences. Closely rclated
research is being performed by Peng and Williams (1992) into 2 similar algorithm to prioritized
sweeping, which they call Dyna-Q-queue.

We begin by providing a review of the problems and techniques in Markov prediction and
control. More thorough reviews may be found in Sutton (1988), Barto et al. (1989), Sutton (1990),
Kaelbling (1990) and Barto et al. (1991).

A discrete, finite Markov system has S states. Time passes as a series of discrete clock ticks,
and on each tick the state may change. The probability of possible successor states is a function
only of the current system state. The entire system can thus be specified by S and a table of
transition probabilities.

u qiz2 - Qs
g21 Qo2 "+ Q28

(1

gs1 qs2 - 4ss

where ¢;; denotes the probability that, given we are in state i, we will be in state j on the next
time step. The table must satisfy Z}s._:l qi; = 1 for every <.

Figure 1 shows an example with six states corresponding to the six cells. With the exception of
the rightmost states, on each time siep the syster.. moves at random to a neighbor. For example,
state 1 moves directly to state 3 with probability %, atd thus g13 = %

The state-space of a Markov system is partitinned into two subsets: the non-terminal states

NONTERMS, and the terminal states TERMS. Omnce a terminal state is enteved, it is never left
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Figure 1: A six state Markov system.

4
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(k € TERMS=qxx = 1). In the example, the two rightmost states are terminal,

A Markov system is defined as absorbing if from every non-terminal state it is possible to
eventually enter a terminal state. We restrict our attention to absorbing Markov systems.

Let us first consider questions such as “starting in state i, what is the probability of eventual
o

absorption by terminal state k Write this value as 7. All the absorption probabilities for

terminal state k& can be computed by solving the following set of linear equations. Assume that the

non-terminal states are indexed by 1,2,...,95,; where S, is the number of non-terminals,
, Tk = @kt oqume t+ oquzra ot QS TSak
T2k = Q. t quTk  + qa2fa  + ...+ €25, TSuk @
ﬂ.s"gk = antk + an‘lTrlk -I- antz"rzk + v + qu|¢Sn¢7rSn:k

Whien the transition probabilities {g;;} are known it is thus an easy matier to compute the eventual
absorption probabilities. Machine learning can be applied to the case in which the transition
probabilities are not known in advance, and all we may do instead is watch a series of state
transitions. Such a series is normally arranged into a set of trials—each trial starts in some state

and then continues until the system enters a terminal state. In our example, the learner might be




shown
3 - 4 - 3 -1 - 2 = 4 — 6

=

3 — 5

1 - 2 -1 =3 — 3

Learning approaches to this problem have been widely studied. A recent contribution of great

relevance is an elegant algorithm called Temporal Differencing (Sutton 1988).

1.1 The Temporal Differencing algorithm reviewed

We describe the discrete state-space case of the temporal differencing algorithm. TD can, how-
ever, also be applied to systeins with continuous state-spaces in which long term probabilities are
represented by parametric function approximators such as neural networks (Tesauro 1991).

The prediction process runs in a series of epochs. Each epoch ends when a terminal state is
entered. Assume we have passed through states iy,4s,...45,4,41 50 far in the current epoch. n is
our age within the epoch and ¢ is our global age. #,—i,4, is the most recently observed transition,
Let #x [t] be the estimated value of =i after the system has been running for ¢ state transition
observatione. Then the TD algorithm for discrete state-spaces updates these estimates according

to the following rule:

for each i € NONTERMS (the set of non-terminal states)

for each k € TERMS (the set of terminal staies) (4)

o+ 1] = o L8]+ & (Fina 1] = ok 1) 30 N X555)
j=1

where a is a learning rate parameter 0 < a < 1, where A is a memory constant 0 < A < 1 and

where
, 1 ifeg =1
Xi(3;) = (5)
Q otherwise

In practice there is a computational trick which requires considerably less computation than the

algorithm of Equation (4) but which computes the same values (Sutten 1988). The TD algorithm




.

R R e A T

7244

O B2 H
A

T A

SR

4.

By
3
é)
3
g
=

then requires O(S;) computation steps per real observation, where S; is the number of termi-
nal states. Convergence proofs exist for several formulations of the TD algorithm (Sutton 1988;

Dayan 1992).

1.2 The classical approach

The classical mewnod proceeds by building a waximum likelihood model of the state transitions.

gi; is estimated by
Number of observations ¢ — j

~

gi; =

(6)

Number of occasions in state ¢
After t 4 1 observations the new absorption probability estimates are computed to satisfy, for each
terminal state k, the §,,; X 5, linear system

Tk [t + 1] = Gk + Z Gi; ik [t+1) (7)

jesuces({)nNONTERMS

where succs(?) is the set of all states which have been observed as immediate successors of ¢ and
NONTERMS is the set of non-terminal states. It is clear that if the §;; estimates were correct then
the solution of Equation (7) would be the solution of Equation (2).

Notice that the values 7 [t + 1] depend only on the values of §;x after ¢ + 1 observations—they
are not defined in terms of the previous absorption probability estimates #;x[t]. However, it is
efficient to solve Equation (7) iteratively. Let {p;x} be a set of intermediate iteration variables
containing intermediate estimates of #;i [t + 1]. What initial estimates should be used to start the
iteration? An excellent answer is to use the previous absorption probability estimates 7 [t].

The complete algorithm, performed once after every real-world observation, is shown in Figure 2.
The transformation on the p;x’s can be shown to be a contraction mapping as defined in Section 3.1
of Bertsekas and Tsitsiklis (1989), and thus, as the same reference proves, convergence to a solution
salisfying Equation (7) is guaranteed. If, according to the estimated transitions, all states can reach
a terminal state, then this solution is unique. The inner loop (“for each k € TERMS ---") is referred
to as a probability backup operation, and requires O(Stpguccs) basic operations, where pigyccs is the

mean number of observed stochastic successors.



1. for each ¢ € NONTERMS, for each k € TERMS,
pik = Tk [1)

2. repeat

2.1 Apax := 0

2.2 for each i € NONTERMS

for each k& € TERMS
Puew = {ik + Z Gi;Pjk
jesuccs(s)
A I Pnew — Pik I
Pik *® Pnew

Apax :® max(Aygax, A)
until Amax < €
3. for each ¢ € NONTERMS, for each k € TERMS

Tt +1] = pi

Figure 2: Stochastic prediction with full Gauss-Seidel iteration.

on




Gauss-Seidel is an expensive algorithm, requiring O(S,;) backups per real-world observation for
the inner loop 2.2 alone. The absorption predictions before the most recent observation, 7 [¢], nor-
mally provide an excellent initial approximation, and only a very few iterations are required. How-
ever, when an “interesting” observation is encountered, for example a previously never-experienced

transition to a terminal state, many iterations, perhaps more than Sy;, are needed for convergence,

2 Prioritized Sweeping

Prioritized sweeping is designed to perform the same task as Gauss-Seidel iteration while using
careful bookkeeping to concentrate all computational effort on the most “interesting” parts of the
system. It operates in a similar computational regime as the Dyna architecture (Sutton 1990), in
which a fixed, but non-trivial, amount of computation is allowed between each real-world observa-
tion. Peng and Williams (1992) are exploring a closely related approach to prioritized sweeping,
developed from Dyna and Q-learning (Watkins 1989).

Prioritized sweeping uses the A value from the probability update step 2.2 in the previous
algorithm to determine which other updates are likely to be “interesting”—if the step produces a
large change in the state’s absorption probabilities then it is interesting because it is likely that
the absorption probabilities of the predecessors of the state will change given an opportunity-. If,
on the other hand, the step produces a small change then we will assume that there is less urgency
to process the predecessors. The predecessors of a state ¢ are all those states i’ which have, at least
once in the history of the system, performed a one-step transition i/ — i.

If we have just changed the absorption probabilities of ¢ by A, then the maximum possible
one-processing-step change in predecessor i’ caused by our change in 7 is §;A. This value is the
priority P of the predecessor #/, and if ¢ is not curren..y on the priority queue it is placed there at
priority P. If it is already on the queue, but at lower priority, then it is promoted.

After each real-world observation i — j, the transition probability estimate §;; is updated

along with the probabilities of transition to all other previously observed successors of i. Then

state ¢ is promoted to the top of the priority queue so that its absorption probabilities are updated




immediately. Next, we continue to process further states from the top of the queue. Each state
that is processed may result in the addition or promotion of its predecessors within the queue. This
loop continues for a preset number of processing steps or until the queue empties.

Thus if a real world observation is interesting, all its predecessors and their earlier ancestors
quickly find themselves near the top of the priority queue. On the other hand, if the real world
observation is unsurprising, then the processing immediately proceeds to other, more imporiant
arcas of state-space which had been under consideration on the previous time step. These other
areas may be different from those in which the system currently finds itself.

Let us look at the formal algorithin in Figure 3. On entry we assume the most recent state
transition was from 7.ecens. We drop the [t] suffix from the # [t] notation.

The decision of when we are allowed further processing, at the start of Step 2, could be im-
plemented in many ways. In our subsequent experiments the rule is simply that a maximum of 8
backups are permitted per real-world observation.

There are many possible priority queue implementations, including a heap (Knuth 1973), which

was used in all experiments in this paper. The cost of the algorithm is

0 (ﬂst(#aucca + /-‘pn:d.PQCUST(Snt))) (8)

basic operations, where at most 3 states are processed from the priority queue and PQCOST(N) is
the cost of accessing a priority queue of length N. For the heap implementation this is logg V.
States are only added to the queue if their priorities are above a tiny threshold ¢. This is a
value close to the machine floating-point precision. Stopping criteria are fraught with danger, but
in this paper we discuss such dangers no further except to note that in our experiments they have
caused no problem.

Prioritized sweeping is a heuristic, and in this paper no formal proof of convergence, or conver-
gence rate, is given. We expect to Le able to prove convergence using techniques from asynchronous
Dynamic Programming (Bertsikas and Tsitsiklis 1989) and variants of the Temporal Differencing
analysis of Dayan (1992). Later, this paper gives some empirical experiments in which convergence

is relatively fast.




1. Pror:ote state ipecens to top of priority queue.

2. While we are allowed further processing and priority queue not empiy

2.1 Remove the top state from the priority queue. Call it ¢
2.2 Apax =0

2.3 for each k € TERMS
Poew = ik + Z di:‘i’jk
jesuccs(i)nNNONTERMS
A= Ipnew_ﬁ'ik |
Rik *® Pnew

Apax :* max(Apax, A)
2.4 for each # € preds(i)

P o= giiAnax

If P > € (a ~iny threshold) and if (i’ is not on
queue or P exceeds the cuirent priority of 1) then

promote i’ to new priority P.

Figure 3: The prioritized sweeping algorithm.




The memory requirements of learning the S x 5 trs .sition probability matrix. where S is the
number of states. may initially appear prohibitive, especially since we intend to operate with more
than 10,000 states. However. we need only allocate memory 1or the experiences the system wotually
has, and for & wide class of physical systems there is not enough time in the lifetime of the system
to run out of memory.

Similarly. the average number of successors aud predeceseors of states in the estimated transition
matrix can be assuined « < 5 A umple justification i that few real problems are fully (onnected,
hut a deeper tearon 1s that for large §. even sf the true traasition probability matnx s not sparse.
there will never be ime to gaih ~aough ~yperneace for the sstimated ranslion matnx o not be

sparse

3 A Markov Prediction Experiment
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*, wiire 1he following RMS error over all states was recorded:

e Vi Tomb (rwmrre - #waire)’ (9)

5 —~ In Figure 5 we look at the RMS error plotted against the number of observations. After 100,000
= experiences all methods are performing well; TD is the weakest but even it manages an RMS error
of only 0.1.

In Figure 6 we look at a different measure of performance: plotted against real time. Here we
" see the great weakness of the classical technique. Performing the Gauss-Seidel algorithm of Figure 2
after each observition gives excellent predictions but is very time consuming, and after 300 seconds
there has only been time to process a few thousand observation:. After the same amount of time,

11D has had time to process almost half a million observations. Prioritized sweeping performs best

relative to real time. it takes approximately ten times as long as TD to process each observation
but because the data is used more effectively, convergeunce is superior.

len further experiments, each with a different random 500 state problem, were run. These
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TD Classical Pri. Sweep

After 100,000 observations | 0.14 £ 0.077 | 0.024 £ 0.0063 | 0.024 &+ 0.0061

After 300 seconds 0.079+ 0.067 | 0.23 £ 0.038 | 0.021 £ 0.0080

Table 1: RMS prediction error: mean and standard deviation for ten experiments.

further runs, the final results of which are given in Table 1, indicate that the graphs in Figures 5
and 6 are not atypical,

This example has shown the general theme of this paper. Model-free methods perform well in
real time but make weak use of their data. Classical methods make good use of their data but are
often impractically slow. Techniques such as prioritized sweeping are interesting because they may
be able to achieve both.

There is an important footnote concerning the classical method. If the problem had only
required that a prediction be made after all transitions had been observed, then the only real time
cost would have been recording the transitions in memory. The absorption probabilities could then
have been computed as an individual large computation at the end of the sequence, giving the best
possible estimate with a relatively small overall time cost. For the 500-state problem, we estimate
the cost as approximately 30 seconds for 100,000 points. Prioritized sweeping could alse benefit
from only being required to predict after seeing all the data, althongh with little advantage over
the simpler, classical algorithm. Prioritized sweeping is thus me « usefully applicable to the class of
tasks in which a prediction is required on every time step. Fuithermore, the remainder of the paper
concerns control of Markov decision tasks, in which the maintenance of up to date predictions is

particularly beneficial.

4 Learning Control of Markov Decision Tasks

Let us consider a related stochastic prediction problem, which bridges the gap between Markov
prediction and control. Suppose the system gete rewarded for entering certain states and punished

for entering others. Let the reward of the ith state be r;. An important quantity is then the

12




expected discounted reward-to-go of each state. This is an infinite sum of expected future rewards,
with each term supplemented by an exponentially decreasing weighting factor v* where 7 is called
the discount factor. The expected discounted reward-to-go is

Ji = (This reward)+

~ (Expected reward in 1 time step)+

v? (Expected reward in 2 time steps)+ (10)
v*¥ (Expected reward in k time steps)+
For each ¢, J; can be computed recursively as a function of its immediate successors.
Jo=rn +7 (quhi + qafi + ...+ qsds)
Ji = 1 47 (qu/a + qala + ...+ qss) (11)
Js = rs 47 (gsidi + gs2da + ...+ gssds)

which is another set of linear equations that may be solved if the transition probabilities ¢;, are
known. If they are not known, but instead a sequence of state transitions and r; observations is
given, then slight modifications of TD, the classical algorithm, and prioritized sweeping cau all be

used to esiimate J;.

Markov decision tasks
Markov decision tasks are an extension of the Markov model in which, instead of passively watching
the state move around randomly, we are able to influence it.

Associated with each state, i, is a finite, discrete set of actions, actions(i). On each time step,
the controller must choose an actioa. The probabilities of potential next states depend not only
on the current state, but also on the chosen action. 'We will supplement our example problem with

actions:

actions(1} = {RABDOR,RIGHT] actinns{3) = {RANDOM,RICHT} actions(5) = (STAY}
(12)
actions(2) = {RANDON, RIGHT} actions(4) = {RAKDUM.RIGHT} actions(6) = {STAY}

13




where RANDOM causes the same raadom transitions as before, RIGHT moves, with probability 1, to the
cell immediately f¢ the right, and STAY makes us remain in the same state. There is still no escape
from states 5 and 6.
We use the uotation gf; for the probability that we move to state j, given that we have com-
RANDOM _

menced in state ¢ and applied action a. Thus, in our example g3 % and ¢RIGHT = |,

A policy is a mapping from states to actions. For example, Figure 7 shows the policy

1 —~ RIGHT 3 — RIGHT § — STAY
(13)
2 — RANDOM 4 — HANDOM 6 — STAY
If the controller chooses actions according to a fixed policy then it behaves like a Markov system.

The expected discounted reward-to-go can then be defined and computed in the same manner as

Equation (11).

_1, ._l_, STAY Figure 7: The policy defined by

Equation (13). Also shown is a re-

@ -l el ward function (bottom left of each
2'—J '*'I 4 '}I 6 cell). Large expected reward-to-go in-

_i_. hL _L A sTav rh volves getting to ‘5’ and avoiding ‘6’
rmQ raQ ‘ rm=-10 /

If the goal is large reward-to-go, then some policies are better than others. An important result
from the theory of Markov decision tasks tells us that there always exists at least one policy which
is optimal in the following sense. For every state, the expected discounted reward-to-go using an
optimal policy is no worse than that from any other policy.

Furthermore, there is a simple algorithm for computing both an optimal policy and the expected

discounted reward-to-go of this policy. The algorithm is caned Dynamic Programming (Bellman {957).

It is based on the following relationship known as Bellman’s optimality equation which holds be-
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tween the optimal expected discounted reward-to-go at different states.

Ji= max (ri +7(gh + g d3 + - + glsJs)) (14)

a € actions(i)

Dynamic programming applied to our example gives the policy shown in Figure 7, which happens
to be the unique optimal policy.

A very important question for machine learning has been how to obtain an optimal, or near
optimal, policy when the ¢f; values are not known in advance. Instead, a series of actions, state
transitions, and rewards is observed. For example:

1(rq = 0) MM o, = ) MEBM 4(ry = 0) M 6(rg = 10)

2(r; = 0) RA_I_D_PH (r = 0) RﬂT 3(ra=0) RAEPH 5(rs = —10)

3(ry = 0) "M 51 = 10)

(15)
A critical difference between this problem and the Markov prediction problem of the earlier sections
is that the controller now affects which transitions are seen, because it supplies the actions.

The question of learning such systems is studied by the field of reinforcement learning, which is
also known as “learning control of Markov decision tasks”. Early contributions to this field were the
checkers player of Samuel (1959) and the BOXES system of Michie and Chambers (1968). Even
systems which may at first appear trivially small, such as the two armed bandit problem (Berry
and Fristedt 1985) have promoted rich and interesting work in the statistics community.

T
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proximations to the policy and reward-to-go (called the “adaptive heuristic critic”) was introduced
by Sutton (1984). Kaelbling (1990) introduced several applicable techniques, including the in-
terval Estimation algorithm. Watkins (1989) introduced an importani model-free asynchronous
Dynamic Programming technique called Q-learning. Sutton (19%0) has extended this further with
the Dyra architecture. Christiansen et al. (1990) appiied a planner, closely related to Dynamic
Programming, to a tray tiliing robot. An excellent review of the entire field may be found

in (Barto et al. 1991).
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4.1 Prioritized sweeping for learning control of Markov decision tasks
The main differences between this case and the previous application of prioritized sweeping are

1. We need to estimate the optimal discounted reward-to-go, J, of each state, rather than the

eventual absorption probabilities.

2. Instead of using the absorption probability backup Equation (6), we use Bellman’s equa-

tion (Bellman 1957; Bertsekas and Tsitsiklis 1989):
Ji= M (ff‘ tyx Y] fii-‘jfj) (16)

a € actions(i) jesuces(i,a)

where J; is the estimate of the optimal discounted reward starting from state , v is the
discount factor, actions(i) is the set of possible actions in state i, and §f; is the maximum
likelihood estimated probability of moving from state ¢ to state j given that we have applie&
action a. The estimated i1 mediate reward, ¢, is computed as the mean reward experienced

to date during all previous applications of action a in state 1.

N 3. The rate of learning can be affected considerably by the controller’s exploration strategy.

The algorithm for prioritized sweeping in conjunction with Bellman’s equation is given in Fig-
ure 8. The only substantial difference between this algorithm and the prediction case is the state
backup step, namely the Bellman’s equation application of Step 2.2, Notice also that the prede-

cessors of a state are now a set of state-action pairs.

Let us now consider the question of how best to gain useful experience in a Markov decision

task. The formally correct method would be to compute that exploration which maximizes the

g expected reward received over the robot’s remaining life. This computation, which requires a
prior probability distribution over the space of Markov decision tasks, is unrealistically expensive.
It is computationally exponential in all of (i) the number of time steps for which the system is

to remain alive (i) the number of states in the system, and (iii) the number of actions avail-

able (Berry and iristedt 1985).
An exploration heuristic is thus required. Kaelbling (1990) and Barto et al. (1991) both give

excellent overviews of the wide range of heuristics which have been proposed.

& 16 1
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1. Promote state trecens t0 top of priority queue.

2. While we are allowed further processing and priority queue not empty

2.1 Remove the top state from the priority queue. Call i$ i

2.2 puew 1= mnax (7"? +7 X Z d,‘f,fj)

a € actions(i) j€suces(i,a)

2.3 Apax = l Puew — jt' I
24 JA". 1= Pnew

2.5 for each (i/,a') € preds(i)

P = §%:Amax

. If P > € (a tiny threshold) and if (if ¢ not on

queue or P exceeds the current priority of #’) then

Figure 8: The prioritized sweeping algorithm for Markov Decision Tasks.
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We use the philosophy of optimism in the face of uncertainty, a method successfully developed by
the Interval Estimation (I1E) algorithm of Kaelbling (1990) and by the exploration bonus technique
in Dyna (Sutton 1990). The same philosophy is also used by Thrun and Moller (1992).

A slightly different heuristic is used with the prioritized sweeping algorithm. This is because
of minor problems of computational expense for IE and the instability of the exploration bonus in
large state-spaces.

The slightly different optimistic heuristic is as follows. In the absence of contrary evidence,
any action in any state is assumed to lead us directly to a fictional absorbing state of permanent
large reward 7°P*. The amount of evidence to the contrary which is needed to quench our optimism
is a system parameter, Thored- H the number of occurrences of a given state-action pair is less
than Thored, We assume that we will jump to fictional state with subsequent long term 'rewa.r(_i
7OPt 4 4pOPt 4 y2p0Pt | = rOPt/(] — ). If the number of occurrences is not less than Thored, then

we use the true, non-optimistic, assumption. Thus the optimistic reward-to-go estimate Jort i

s opt max TPl =) it nf < Thored
JP =

a € actions(i) | 7%+ X 2 % J;-’p‘ otherwise
jEsuccs(i,a)

where n? is the number of times action ¢ has been tried to date in state i. The important

(17)

feature, identified by Sutton (1990), is the planning to ezplore behavior caused by the appéa.r-
ance of the optimism on both sides of the equation. A related exploration technique was used
by (Christiansen et al. 1990). Consider the situation in Figure 9. The top left hand corner of
state-space only looks atiractive if we use an optimistic heuristic. The areas near the frontiers of
little experience will have high J°P*, and in turn the areas near those have nearly as high JoP*.
Therefore, if prioritized sweeping (or any other asynchronous dynamic programming method) does
its job, from START we will be encouraged to go north towards the unknown instead of east to
the best reward discovered to date.

The system parameter 7°P* does not require fine tuning. It can be set to a gross overestimate
of the largest possible reward, and the system will simply continue exploration until it has sampled
all state-action combinations Tyored times. However, Section 6 discusses its use as a search-guiding

heuristic similar to the heuristic at the heart of A* search.
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Figure 9: The state-space of a

very simple path planaing prob-

lem.

The Tyoreq parameter, which defines how often we must try a given state-action combination
before we cease our optimism, certainly does require forethought by the human programmer. If
tco small, we might overlook some low probability but highly rewarding stochastic successor. If
too high, the system will waste time needlessly resampling already reliable statistics. Thus, the
exploration procedure does not have full autonomy. This is, arguably, a necessary weakness of
any non-random exploration heuristic. Dyna’s exploration bonus contains a similar parameter in
the relative size of the exploration bonus to the expected reward, and Interval Estimation has the
pa.ra.mtlater implicit in the optimistic confidence level.

The selection of an appropriate Thoreq Wwould be hard to formalize. It should take into account:
the expected lifetime of the system, a measure of the importance of not becoming stuck during
learning, and perhaps any available prior knowledge of the stochasticity of the system, or known
constraints on the reward function. An automatic procedure for computing Thored Would require
a formal definition of the human programmer’s requirements and a prior distribution of possible

worlds.
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5 Experimental Results

This section begins with some comparative results in the familiar domain of stochastic two dimen-
sional maze worlds. It then examines the 3 parameter which specifies the amount of computation
(number of Bellman equation backups) allowed per real-world observation and also t'ie Tyored pPa-
1 .neter which defines how much exploration is performed. A number of larger examples are then

used to investigate performance for a range of different discrete stochastic reinforcement tasks.

Maze prcblems
Fach state has four actions: one for each direction. Blocked actions do not move. One goal state
(the star in subsequent figures) gives 100 units of reward, all others give no reward, and there is
a discount factor of 0.99. Trials start in the bottom left corner. The system is reset to the start
state whenever the goal state has been visited ten times s‘nce the last reset. The reset is outside
the learning task: it is not observed as a state transition.

Dyna and prioritized sweeping were both allowed ten Bellman’s equation backups per observa-

tion (8 = 10). Two versions of Dyna were tested:

1. Dyna-PI+is the original Dyna-PI of Sutton (1990), supplemented with the exploration bonus

(€ = 0.001) from the same paper.

2. Dyna-opt is the original Dyna-PI supplemented with the same Tpored Optimistic heuristic

that is used by prioritized sweeping.

Table 2 shows the number of observations before convergence. A trial was defined to have converged
by a given time if no subsequent sequence of 1000 decisions contained more than 2% suboptimal
decisions. The test for optimality was performed by comparison with the control law obtained from

full dynamic programming using the true simulation.

We begin with some results for deterministic problems, in the first three rows of Table 2. The
first row shows that Dyna-PI+ converged for all nroblems except the 4,528 state problem. A smaller

exploration bonus than e = 0.001 might have helped the latter problem converge, albeit slowly.
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Maze i

15 state 117 state 178 state 284 state 605 state 2627 4528
Det Dyna-PI+ 400 500 10,000 18,000 36,000 195,000 > 108
Det Dyna-opt 300 900 4,250 12,000 21,000 105,000 245,000
Det PriSweep 150 1,200 3,250 2,800 6,000 29,000 59,000
Stc Q 600 31,000 62,000 310,000 untested untested untested
Stc Q-opt 500 > 10° > 10° untested untested untested untested
Stc Dyna-PI+ 400 4750 12,000 25,000 58,000 240,000 525,000
Stc Dyna-opt 700 5250 7500 14,000 35,000 155,000 310,000
Stc PriSwaep 600 3500 5500 11,000 22,000 94,000 200,700

Table 2. Number of observations before 98% of decisions were subsequently optimal. These values
have been rounded. For prioritized sweeping (and Dyna, where applicable) 8 = 10, € = 10~3 and
r°Pt = 200. The tabulated experiments were all only run once; however, further multinle runs of
the optimistic Dyna a.d prioritized sweeping have revealed little variance in convergence rate. See

also Figures 11 a. .2 14.
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The other two rows used the optimistic heuristic with r*bt = 200 and Ty eq = 1. The r#t ajue
thus overestimated the best possible reward by a factor of two  this was to see if we would coaverge
without an accurate estimation of the true best possible reward. Tpoed = | meant that as soon as
something was tried all optimism was lost. This is a safe strategy in a deterministic environment.

The learning controller was given no clues beyond those implicit in the two parameters rob*
and Tyored- Thus, to ensure convergence to the optimum, it had to sample each state-action pair
at least once.

Prioritized sweeping required fewer steps than optimistic Dyna in all mazes but one small one.
All learners and runs took between 10—30 secunds per thousend observations running on a Sun-4
workstation. Interestingly, prioritized sweeping usually took about half the real time of Dyna. This
is because during much of the exploration there were so few surprises that it did not need to use
its full allocation of Bellman's equation processing steps. This effect is even more pronounced if
300 processing steps per observation are allowed instead of ten. For example, in the 4,528 state
prcblem, optimistic Dyna then required 143,000 observations and took three hours. Prioritized
sweeping required 21,000 observations and took fifteen minutes.

The lower part of Table 2 shows the results for stochastic problems using the same mazes. Each
action had a 50% chance of being corrupted to a random value before it was applied. Thus if

“North” was applied the outcome was movement North 1 + % = 2 of the time, and each other

directic'm % of the time. Prioritized sweeping and optimistic Dyna each used a Tyopeq Value of 5.
Thus, they sampled every state-action combination five times before losing their optimism. This
value was chosen as a reasonable balance between exploration and exploitation, given the authors’
knowledge of the stochasticity of the system, and happily it proved to be satisfactory. As we
discussed in Section 4.1, the choice of Tyoreq i8 not automated for any of these experiments.
These stochastic results also include a recent interesting incremental technique called Q-learning
(Watkins 1989), which manages to learn without constructing a state transition model. Addition-

ally, we tried Q-learning using the same Tyoreq optimistic heuristic as prioritized sweeping. The

initial Q values were set high to encourage better initial exploration than a random walk. Much

effort was put into tuning Q for this application. Its performance was, however, worse. In particu-




lar. the optimistic beursstic 1o a diraster for § brarmng which casids geis trapped  this 10 becauwe
~ Q lvarning only pare atteation to the curreat state of the system while the “planming to explore”
behavior requires that attention 1s pasd to arexs of the state space which the system s not cutzently

in.
For the stuchastic maze results the difference between optimistic Dyna and prioritized sweeping
is less pronounced. This 1 because the large number of predecessors quickly dilute the wave of
\ interesting changes which are propagated back on the priority queue, leading to a queue of many,
very similar, priorities. However, prioritized sweeping still required less than half the total real

time of ‘aike; version of Dyna before convergence.

A small, fully connected, example

5 We also have results for a five state bench-mark problem described by Sato et al. (1988) and
% also used in Barto and Singh (199¢). The transition matrix is in Figure 10 and the results are
.I,'—

[

shown in Table 3. A Tyued parameter of 20 was used In fact, Tyoa = 5 also converged 20

times out of 20, taking on average 120 steps and therefore Ty,ed = 20 was considered a safe
safety margin. The two Q-learners were heavily tweaked to find their best performance. The
EQ-algorithm (Barto and Singh 1990) is designed to guarantee convergence at all costs—and so its
poor comparative performance here is to be expected. Dyna-PI+ was given what was probably too

small an exploration bonus for the problem. The reduced exploration meant faster convergence,

but on one occasion some :“isleading early trausitions caused it to get stuck with a suboptimal

policy.

The system parameters for prioritized sweeping
We now look at two results to give insight into two important parameters of prioritized sweeping.

Firstly we consider its performance relative to the number of backups per observation. This exper-

iment used the stochastic, 605 state example from Table 2 and the results are graphed in Figure 11.

Using one operation is almost equivalent to optimistic Q-learning which does not converge. Even

-

using only two backups gives reasonable performance, and performance improves as the number of




Q Q-opt Dyna-PI+ Dyna-opt | PriSweep | EQ

2105520 | 2,078+ 430 | 25235 | 470421 | 47222 | 7,105 % 662 -

(one falure)

Table 3. The mean number of observations before > 98% of subsequent decisions were optimal.
Each learner was run twenty times and in all cases, bar one, there was eventual convergence to
optimal performance. Also shown is the standard deviation of the twenty trials. The discount
< factor was v = 0.8. For the optimistic methods r°®* = 16 and Tyored = 20. For prioritized sweeping

and Dyna 3 = 10, and for prioritized sweeping ¢ = 1073,
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“ Figure 1,: Traasition probabilities Figure 11: Number of experiences

(x100) and expected rewards of a five needed for prioritized sweeping to con-
N 3 state, three action, Markov control verge, plotted against number of back-
K problem. ups per observation (). This used the
605 state stochastic maze from Table 2
(v = 0.99, r°P* = 200, Tyoreqg = 5
¢ = 107%). The error bars show the N
standard deviations from tea runs with

different random seeds.

backups increases. Beyond fifty backups, the priority queue usually gets exhausted on each time

step, and there is little further immprovement.

The other parameter is Thored- We use a test case in which inadequate exploration is particularly
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dangerous. The maze in Figure 12 has two reward states. The iesser reward of 50 comes from the
state in the bottom right. The greater reward of 100 is from the more inaccessible state near the
top right. Trials always begin from the bottom left and the world is stochastic in the same manner
as the earlier examples. Trials are reset when either goal state is encountered ten times. If Thored
is set too low and if there is bad luck while attempting to explore near the large reward state then
the controller will lose interest, never return, and very likely spend the rest of its days traveling
to the inferior reward. Each value of Tioreq Was run ten times and we recorded the percentage of
runs which had converged correctly by 50,000 observations. Figure 13 graphs the results. For this
problem Thored = 5 (Which was checked a further 30 times) appears sufficient to ensure that we do

not become stuck.

¥ Figure 12: A misleading maze.

A small reward in the botton.

right tempts us away from a

larger reward.

Figure 14 shows the number of experiences needed for convergence as a function of Tyored for

the same set of experiments.

Other tasks
We begin with a task with a 3-d state-space quantized into 14,400 potential discrete states: guiding

a rod through a planar maze by translation and rotation. There are four actions: move forwards

one unit along the rod’s length, move backwards one unit, rotate left one unit and rotate right one
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vargence versus Thoped for the mislead- viation number of experiences before
ing maze (v = 0.99, r°Pt = 200, § = 10, convergence for ten independent exper-
=107, iments, as a function of Tyooed for the

misleading maze. Parameter values i

as in Figure 13.

unit. In fact, the action takes us to the nearest quantized state after having applied the action.
There are 20 x 20 position quantizations and 36 angle quantizations producing 14,400 states, though
many arc unreachable from the start. The distance unit is 1/20th the width f the workspace and
the angular unit is 10 degrees. The problem is deterministic but requires a long, very specific,
sequence of moves to get to the goal. Figure 15 shows the problem, obstacles ar.d shortest solution
for our experiments.

Q, Dyna-PI+, Optimistic Dyna and priotitized sweeping were all tested. The results are in
Table 4.

Q and Dyna-PI+ did not even travel a quarter of the way to the goal, let alone discover an
optimal path, within 200,000 experiences. It is possible that a very well-chosen exploration bonus
wouid have helped Dyna-PI+ but in the four different experiments we tried, no value produced
stable exploration.

Optimistic Dyna and prioritized sweeping both eventually converged, with the latter requiring
a third the experiences and a fifth the real time.

When 20.0 backups per experience were permitted, instead of 100, then both optimistic Dyna
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Figure 15: A three-DOF prob-
lem and the shortsst solution
path.

3

_ Experiences to converge | Real time to converge

; Q never

Dyna-PI+ never
L Optimistic Dyna 55,000 1500 secs
;: Prioritized Sweeping 14,000 330 secs

Table 4. Performance on the deterministic rod-in-maze task. Both Dynas and prioritized sweeping

were allowed 100 backups per experience (y = 0.99,7°P* = 200, 8 = 100, Thored = 1,6 =1073).




and prioritized sweeping required fewer experiences to converge. Optimistic Dyna took 21,000
experiences instead of 55,000 but took 2,900 seconds—almost twice the real time. Prioritized
sweeping took 13,500 instead of 14,000 experiences—very little improvement, but it used no extra
time. This indicates that for prioritized sweeping, 100 backups per observation is sufficient to make
almost complete use of its observations, so that all the long term reward (J;) estimates are very
close to the estimates which would be globally ~onsistent with the transition probability estimates
(§;). Thus, we conjecture thai even full dynamic programming after each experience (which would

take days of real time) would do little better.

We also consider a more complex extension of the maze world, invented by Singh (1991), which
consists of a maze and extra state information dependent on where you have visited so far in the
maze. We use the example in Figure 16. There are 263 cells, but there are also four binau.'y ﬂa@
appended to the state, producing a total of 263 x 16 = 4208 states. The flags, named A. 8, C
and X, are set whenever the cell containing the corresponding letter is passed through. All flags
are cleared when the start state (in the bottom left hand corner) is entered. A reward iu given
when the goal state (top right) is entered, oaly if flags A, B and C are set. Flag X provides further
interesy. If X is clear, the reward is 100 units. If X is set, the reward is only 50 units. This task
does not specify which order A, B and C are to be visited The controller must find the optimal
path. '

Prioritized sweeping was tried with both the deterministic and stochastic maze dynamics (v =
0.99,7°Pt = 200, = 10,€¢ = 10~3). In the deterministic case Toored = !. In the stochastic case

5. In both cases

?
e A

o«

AN
Az

Thored = d the imal path through the three good flags to the
goal, avoiding flag X. The deterministic case took 19,000 observations and twenty minutes of real
time. The stochastic case required 120,000 observations and two hours of real time.

In these experimente, no information regarding the special structure of the problein was available
to the learner. For example, knowledge of the cell at coordinates (7, 1) with flag A set had no bearing
on knowledge of the cell at coordinates (7,1) with A clear. If we told the learner that cell transitions

are independent of flag settings then the convergence rate would be increased considerably. A far

more interesting possibiiity is the automatic discovery of such structure by inductive inference on
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B
Figure 16: A maze with extra
! state in the form of four binary
- flags.
C

the structure of the learned state transition matrix. See Singh (1991) for current interesting work
in that direction. _
The third experiment is the familiar pole-balancing problem of Michie and Chambers (1968).

There is no place here to discuss the enormous number of techniques which have been applied to

this problem along with an equally enormous variation in details of the task formulation. The state-
space of the cart is quantized at three equal levels for cart position, cart velocity, and pole angular

speed. It is quantized at cix equal levels for pole angle. The simulation used four real-valued state

ST TR L M PR S L A A e b e B R e
) ST P -t e - P = P

variabl.es, yet the learner was only allowed to base its control decisions on the current quantized
state. There are two actions: thrust left 10N and thrust right 10N. The problem is interesting
because it involves hidden state —the controller believes the system is Markov when in fact it is not.
This is because there are many possible values for the real-valued state variables in each discretized
box, and successor boxes are partially determined by these real values, which are not given to
the controller. The task is defined by a reward of 100 units for every state except one absorbing
state corresponding to a crash, which receives zero reward. Crashes occur if the pole angle or cart
position exceed their limits. A discount factor of v = 0.999 is used and trials start in random
survivable configurations. Other parameters are (r°P* = 200, = 100, Thored = 1,€ = 1073),

If the simulation contains no noise, or a very small amount (0.1% added to the simulated thrust),
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prioritized sweeping very quickly (usually in under 1000 observations and 15 crashes) develops a
policy which provides stability for approximately 100,006 cycles. With a small amount of noise

(1%), stable runs of approximately 20,000 time steps are discovered after, on average, 30 crashes.

6 Heuristics to Guide Search

In all experiments to date, the optimistic estimate of the best available one-step reward, r°P!, has
been set to an overestimate of the best reward which is actually available. However, if the human
programmer knows in advance what is the best possible reward-to-go from any given state, then
the resultant, more realistic, optimism does not need to experience all state-action pairs.

For example, consider the maze world. If the robot is told the location of the goal state (in a.}l
previous experiments it was not given this infermation), but is not told which states are blocked,
then it can nevertheless compute what would be the best possible reward-to-go from a state. It
could not be greater than the reward obtained from the shortest possible path to the goal. The
length of the path, {, can be computed easily with the Manhattan distance metric and then the
best possible reward-to-go is
]

7.opt.,),

0,71 +072+...+07l—1 +ropt7l+ropt7l+1 +... = : "

(18)

When this optimistic heuristic is used, initial exploration is biased towards the goal, and once a
path is discovered then many of the unexplored areas may be ignored. Ignoring occurs when even
the most optimistic reward-to-go of a state is no greater than that of the already obtaired path.

For example, Figure 17 shows the areas explored using a Manhattan heuristic when finding the
optimal path from the start state at the bottom leftmost cell to the goal state at the center of the
maze. The maze has 8525 states of which only 1722 needed to be explored.

For some tasks we may be satisfied to cea.e cxploration when we have obtained a solution
known to be, say, within 50% of the optimal solution. This can be achieved by using a heuristic

which lies: it tells us that the best possible reward-to-go is that of a path which is twice the length

of the true shortest possible path.




Figure 17: Dotted states
are all those visited when
the Manhattan heuristic was
used to derive rPt (y =
0.98,8 = 10, Thored = 1, ¢ =
107%).

.o

7 Discussion

Generalization of the state transition model
This pz'a.per has been concerned with discrete state systems in which no prior assumptions are made
about the structure of the state-space. Despite the weakness of the zssumptions, we can successfully
learn large stochastic tasks. However, very many problems do have extra known structure in the
state-space, and it is important to consider how this knowledge can be used. By far the most
common knowledge is smoothness—given two states which are in some way similar, in general
their transition probabilities will be similar.

TD can also be applied to highly smooth problems using a parametric function approximator
such as a uneural network. This technique has recently been used successfully on a large coraplex
problem, Backgammon, by Tesauro (1991). The discrete version of prioritized sweeping given in

this paper could not be applied directly to Backgammon because the game kas 10?3 states, which
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is unmanageably large by a factor of at least 10'°. However, a method which quantized the space
of board positions, or used a more sophisticated smoothing mechanism, might conceivably be able
to compute a near-optimal strategy.

We are currently developing memory-based algorithms which take advantage of local smoothness
assumptions. In these investigations, state transition models are learned by memory-based func-
tion approximators (Moore and Atkeson 1992). Prioritized sweeping takes place over non-uniform
tessellations of state-space, partitioned by variable resolution kd-trees (Moore 1991). We are also
investigating the role of locally linear control rules and reward functions in such partitionings, in
which instead of using Bellman’s Equation (16) directly, we use local linear quadratic regulators
(LQR) (see, for example, Sage and White (1977)). It is worth remembering that, if the system is
sufficiently linear, LQR is an extremely powerful technique. In a pole balancer experiment ix'x. whicil
we used local weighted regression to identify a local linear model, LQR was able to create a stable
controiler based on only 31 state transitions!

Other current investigations which attempt to perform generalization in conjunction with re-
inforcement learning are Mahadevan and Connell (1990) which investigates clustering parts of the
policy, Chapman and Kaelbling (1990) which investigates automatic detection of locally relevant
state variables, and Singh (1991) which considers how to automatically discover the structure in

tasks such as the multiple-flags example of Figure 186.

7.1 Related work

The Dyna-Q-queue algorithm of Peng and Williams

Peng and Williams (1992) have concurrently been developing a closely related algorithm which they
call Dyna-Q-queue. This conceptually similar idea was discovered independently. Where prioritized
sweeping provides efficient data processing for methods which learn the staie transition model,
Dyna-Q-queue performs the same role for Q-learning (Watkins 1989), an algorithm which avoids
building an explicit state-transition model. Dyna-Q-queue is also more careful about what it allows

onto the priority queue: it only aliows predecessors which have a predicted change (“interestingness”

32




value) greater than a significant threshold é, whereas prioritized sweeping allows everything above
a minuscule change (¢ = 107 times the maximum reward) on*o the queue. The initial experiments
in Peng and Williams (1992) consist of sparse, deterministic maze worlds of sevcral hundred cells.
Performance, measured by total number of Bellman’s equation processing step. before convergence,

is greatly improved over conventional Dyna-Q (Sutton 1999).

Other related work

Sutton (1990) identifies reinforcement learning with asynchronous dynamic programming and in-
troduces the same computational regime as that used for prioritized sweeping. The notion of using
an optimistic heuristic tc guide search goes back to the A* tree search algorithm Nilsson (1971),
which also motivated another aspect of prioritized sweeping: it too schedules nodes to be exi)andea
according to an (albeit different) priority measure. More recently Korf (1990) gives a combination
of A* and Dynamic Programming in the LRTA* algorithm. LRTA* is, however, very different from
prioritized sweeping: it concentrates all search effort in a finite-horizon set of states beyond the
current actual system state. Finally, Lin (1991) has investigated a simple technique which replays,
backwards, the memorized sequence of experiences which the controller has recently had. Under

some circumstances this may produce some of the beneficial effects of prioritized sweeping.

8 Conclusion

Our investigation shows that prioritized sweeping can solve large state-space real time problems
with which other methods have difficulty. Other benefits of the memory-based approach, described
in Moore and Atkeson (1992), allow us to control forgetting in potentially changeable environments
and to automatically scale state variables. Prioritized sweeping is heavily based on learning a world
model and we conclude with a few words on this topic.

If a model of the world is not known to the human programmer in advance then an adaptive

system is required, and there are two alternatives:




Learn a model and from Learn a control rule

this develop a control without building a

rule. model.

Dyna and prioritized sweeping fall into the first category. Temporal differences and Q-learning
fail into the second. Two motivations for not learning a model are (i) the interesting fact that
the methods do, nevertheless, learn, and (ii) the possibility that this more accurately simulates
some kinds of biological learning (Sutton and Barto 1990). However, a third advantage which is
sometimes touted—that there are computational benefits in not learning a model—is, in our view,
dubious. A common argument is that with the real world available to be sensed directly, why should
we bother with less reliable, learned internal representations? The counterargument is that even
systems acting in real time can, for every one real experience, sample millions of mental expérienc@
from which to make decisions and improve control rules. .

Counsider a more colorful example. Suppose the anti-model argument was applied by a new
arrival at a university campus: “I don’t need a map of the university—the university is its own
map.” If the new arrival truly mistrusts the university cartographers then there might be an
argument for one full exploration of the campus in order to create their own map. However,

once this map has been produced, the amount of time saved overall by pausing to consult. the

map before traveling to each new location—rather than exhaustive or random search in the real

world—is undeniably enormous.

It is justified to complain about the indiscriminate use of combinatorial search or matrix in-
version prior to each supposedly real time decision. However, models need not be used in suck an
extravagant fashion, The prioritized sweeping algorithm is just one example of a class of algorithms

which can easily operate in real time and also derive great power from a model.
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Appendix A. The random generation of a stochastic problem

Here is an algorithm to generate stochastic systems such as Figure 4 in Section 3. The parameters
are: Sy, the number of non-terminal states; S; , the number of terminal states and pyycesy the
mean npumber of successors.

All states have a position within the unit square. The terminal states are generated on an
equispaced circle, diameter 0.9, alternating between black and white. Non-terminal states are ea.d‘x
positioned in a uniformly random location within the square. Then the successors of ea.cﬁ non‘-
terminal are selected. The number vl successors is chosen randomly as 1+ X where X is a random
variable drawn from the exponential distribution with mean paycce — 1.

The choice of successors is affected by locality within the unit square. This provides a more
interesting system than allowing successors to be entirely random. It was empirically noted that
entirely random successors cause the long-term absorption probabilities to be very similar a(‘;IOSS
most of the set of states. Locality leads to a more varied disiribution.

The successors are chosen according to a simple algorithm in which they are drawa from within
a slowly growing circle centered on the parent state.

If the parent state is i, and there are N; successors, then the jth transition probability is
computed by X;/ }:ivél X where {Xj,...,Xn;} are independent random variables, uniformly dis-
tributed in the unit interval.

QOnce the system hes been generated, a check is performed that the system is absorbing—all

non-terminals can eventually reach at least one terminal state. If not, entirely new systems are

randomly generated until an absorbing Markov system is obtained.
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